Advertisement

Towards the Genetic Manipulation of Microalgae to Improve the Carbon Dioxide Fixation and the Production of Biofuels: Present Status and Future Prospect

  • Encarnación Díaz-Santos
Chapter

Abstract

In recent years, interest in microalgae and its biotechnological use in the development of new technologies for the production of biofuels, high added-value compounds and the treatment of wastewater, among others, has increased considerably due to the fact that these microorganisms possess optimal growth properties, nutritional requirements and chemical composition making them a viable and natural alternative to the fossil fuels and the use of chemicals, which would reduce the greenhouse effect and the recent increment of the Earth average temperature. Nevertheless, in spite of all the optimal properties provided by the microalgae, the use of the genetic engineering, the synthetic biology and ultimately the manipulation of their genome is a challenge in development that would allow the improvement of microalgal strains, thus contributing to a greater efficiency and effectiveness in certain stages of the microalgae industry, as well as an enhancement in the yield and productivity, minimizing the economic costs derived from the total industrial process. Different approaches for the genetic manipulation of microalgae and its applications in biofuel production and carbon dioxide fixation, as well as its future implications for the biotechnological industry, are discussed and reviewed in the present chapter.

Keywords

Microalgae Biofuels Carbon dioxide fixation Productivity Genetic manipulation 

References

  1. Ahmad AL, Mat Yasin NH, Derek CJC, Lim JK. Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sust Energ Rev. 2011;15:584–93.CrossRefGoogle Scholar
  2. Apt KE, Grossman AR, Kroth-Pancic PG. Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet. 1996;252:572.PubMedGoogle Scholar
  3. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB, et al. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science. 1988;240(4858):1534–8.CrossRefGoogle Scholar
  4. Brown LE, Sprecher SL, Keller LR. Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation. Mol Cell Biol. 1991;11(4):2328–32.CrossRefGoogle Scholar
  5. Calvin A, Benson A. The path of carbon in photosynthesis. Science. 1948;107:476–80.CrossRefGoogle Scholar
  6. Chen P-H, Liu H-L, Chen Y-J, Cheng Y-H, Lin W-L, Yeh C-H, Chang C-H. Enhancing CO2 bio-mitigation by genetic engineering of cyanobacteria. Energy Environ Sci. 2012;5:8318–27.CrossRefGoogle Scholar
  7. Chen C, Kao A, Tsai Z, Chow T, Chang H, Zhai X, Chen P, Su H, Chang J. Expression of type 2 diacylglycerol acyltransferase gene DGTT1 from Chlamydomonas reinhardtii enhances lipid production in Scenedesmus obliquus. Biotechnol J. 2016;11:336–44.CrossRefGoogle Scholar
  8. Cheney D, Metz B, Stiller J. Agrobacterium-mediated genetic transformation in the macroscopic marine red alga Porphyra yezoensis. J Phycol. 2001;37:11.  https://doi.org/10.1111/j.1529-8817.2001.jpy37303-22.x.CrossRefGoogle Scholar
  9. Daboussi F, Leduc S, Maréchal A, et al. Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat Commun. 2014;29(5):3831.  https://doi.org/10.1038/ncomms4831.CrossRefGoogle Scholar
  10. Debuchy R, Purton S, Rochaix JD. The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J. 1989;8(10):2803–9.CrossRefGoogle Scholar
  11. DOE. National algal biofuels technology review. In: Bioenergy Technologies Office, editor. U.S. Department of Energy OoEEaRE. Washington, DC: DOE (U.S. Department of Energy); 2016. p. 1–212.Google Scholar
  12. Doron L, Segal N, Shapira M. Transgene expression in microalgae-From tools to applications. Front Plan Sci. 2016;7:505.  https://doi.org/10.3389/fpls.2016.00505.CrossRefGoogle Scholar
  13. Eggers B, Mackenzie R. The Cartagena protocol on biosafety. J Int Econ Law. 2000;3(3):525–43.  https://doi.org/10.1093/jiel/3.3.525.CrossRefGoogle Scholar
  14. European Union. Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32001L0018. Accessed 23 Sept 2014; 2001.
  15. European Union. Directive 2009/41/EC of the European Parliament and of the Council of 6 May 2009 on the contained use of genetically modified micro-organisms. http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:125:0075:0097:EN:PDF. Accessed 23 Sept 2014; 2009.
  16. Fernández E, Schnell R, Ranum LP, Hussey SC, Silflow CD, Lefebvre PA. Isolation and characterization of the nitrate reductase structural gene of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1989;86(17):6449–53.CrossRefGoogle Scholar
  17. Gangl D, Zedler JA, Rajakumar PD, Martinez EM, Riseley A, Wlodarczyk A, Purton S, Sakuragi Y, Howe CJ, Jensen PE, Robinson C. Biotechnological exploitation of microalgae. J Exp Bot. 2015;66(22):6975–90.  https://doi.org/10.1093/jxb/erv426.CrossRefPubMedGoogle Scholar
  18. Glass DJ. Government regulation of the uses of genetically modified algae and other microorganisms in biofuel and bio-based chemical production. In: Prokop A, Bajpai R, Zappi M, editors. Algal biorefineries. Cham: Springer; 2015. p. 22–60.Google Scholar
  19. Jeon S, Lim J-M, Lee H-G, et al. Current status and perspectives of genome editing technology for microalgae. Biotechnol Biofuels. 2017;10:267.  https://doi.org/10.1186/s13068-017-0957-z.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Johnson TJ, Gibbons JL, Gu L, Zhou R, Gibbon WR. Molecular genetic improvements of cyanobacteria to enhance the industrial potential of the microbe: a review. Biotechnol Prog. 2016;32:1357–71.  https://doi.org/10.1002/btpr.2358.CrossRefPubMedGoogle Scholar
  21. Kao PH, Ng IS. CRISPRi mediated phosphoenolpyruvate carboxylase regulation to enhance the production of lipid in Chlamydomonas reinhardtii. Bioresour Technol. 2017;245:1527–37.CrossRefGoogle Scholar
  22. Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch HJ, Rosenkranz R, Stäbler N, Schönfeld B, Kreuzaler F, Peterhänsel C. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol. 2007;25:593–9.CrossRefGoogle Scholar
  23. Kim S, Lee YC, Cho DH, Lee HU, Huh YS, Kim GJ, Kim HS. A simple and non-invasive method for nuclear transformation of intact-walled Chlamydomonas reinhardtii. PLoS One. 2014;9:e101018.CrossRefGoogle Scholar
  24. Kindle KL. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1990;87(3):1228–32.CrossRefGoogle Scholar
  25. Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV. Genetic transformation of the green alga-Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci. 2004;166:731–8.CrossRefGoogle Scholar
  26. Kumar G, Mudhoo A, Sivagurunathan P, Nagarajan D, Ghimire A, Lay C-H, Lin C-Y, Lee D-J, Chang J-S. Recent insights into the cell immobilization technology applied for dark fermentative hydrogen production. Bioresour Technol. 2016;219:725–37.CrossRefGoogle Scholar
  27. Kumaraswamy GK, Guerra T, Qian X, Zhang SY, Bryant DA, Dismukes GC. Reprogramming the glycolytic pathway for increased hydrogen production in cyanobacteria: metabolic engineering of NAD(+)-dependent GAPDH. Energy Environ Sci. 2013;6:3722–31.CrossRefGoogle Scholar
  28. Lardizabal K, Effertz R, Levering C, Mai J, Pedroso MC, Jury T, Aesen E, Gruys K, Bennett K. Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean. Plant Physiol. 2008;148(1):89–96.CrossRefGoogle Scholar
  29. Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol. 2000;122:127–36.CrossRefGoogle Scholar
  30. Michalak I, Chojnacka K. Algae as production systems of bioactive compounds. Eng Life Sci. 2015;15:160–76.CrossRefGoogle Scholar
  31. Ng I-S, Tan S-I, Kao P-H, Chang J-S. Recent developments on genetic engineering of microalgae for biofuels and bio-based chemicals. Biotechnol J. 2017;12:1600644.CrossRefGoogle Scholar
  32. Prasenjit M, Preety K, Jyoti S, Shobhit V, Amit C, Rajesh S. Oil from algae. Sustainable utilization of natural. Resources. 2017:213–53.  https://doi.org/10.1201/9781315153292-9.CrossRefGoogle Scholar
  33. Pratheesh PT, Vineetha M, Kurup GM. An efficient protocol for the Agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii. Mol Biotechnol. 2014;56:507–15.CrossRefGoogle Scholar
  34. Purton S, Szaub JB, Wannathong T, Young R, Economou CK. Genetic engineering of algal chloroplasts: progress and prospects. Russ J Plant Physiol. 2013;60:491–9.CrossRefGoogle Scholar
  35. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC. Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell. 2010;9(4):486–501.  https://doi.org/10.1128/EC.00364-09.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Raines CA. Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiol. 2011;155(1):36–42.  https://doi.org/10.1104/pp.110.168559.CrossRefPubMedGoogle Scholar
  37. Rasala BA, Mayfield SP. Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynth Res. 2015;123:227–39.CrossRefGoogle Scholar
  38. Scoma A, Krawietz D, Faraloni C, Giannelli L, Happe T, Torzillo G. Sustained H2 production in a Chlamydomonas reinhardtii D1 protein mutant. J Biotechnol. 2012;157(4):613–9.CrossRefGoogle Scholar
  39. Scott SA, Davey MP, Demis JS, Hors I, Howe CJ, Lea-Smith DJ, Smith AG. Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol. 2010;21:277–86.CrossRefGoogle Scholar
  40. Thao TY, Linh DTN, Si VC, Carter TW, Hill RT. Isolation and Selection of Microalgal Strains from Natural Water Sources in Viet Nam with Potential for Edible Oil Production. Mar Drugs. 2017;15:194.CrossRefGoogle Scholar
  41. Walker TL, Purton S, Becker DK, Collet C. Microalgae as bioreactors. Plant Cell Rep. 2005;24(11):629–41.CrossRefGoogle Scholar
  42. Xue J, Niu YF, Huang T, Yang WD, Liu JS, Li HY. Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metab Eng. 2015;27:1–9.CrossRefGoogle Scholar
  43. Yamano T, Iguchi H, Fukuzawa H. Rapid transformation of Chlamydomonas reinhardtii without cell-wall removal. J Biosci Bioeng. 2013;115(6):691–4.CrossRefGoogle Scholar
  44. Yang B, Liu J, Ma X, Guo B, Liu B, Wu T, Jiang Y, Chen F. Genetic engineering of the Calvin cycle toward enhanced photosynthetic CO2 fixation in microalgae. Biotechnol Biofuels. 2017;10:229.  https://doi.org/10.1186/s13068-017-0916-8.
  45. Zhang C, Hu H. High-efficiency nuclear transformation of the diatom Phaeodactylum tricornutum by electroporation. Mar Genomics. 2014;16:63–6.CrossRefGoogle Scholar
  46. Zheng P, Allen WB, Roesler K, et al. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet. 2008;40(3):367–72.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Encarnación Díaz-Santos
    • 1
  1. 1.Laboratory of Biology and Biotechnology of Cyanobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRSUniversité Paris-Sud, Université Paris-SaclayGif-sur-Yvette CedexFrance

Personalised recommendations