Bioremediation and Biofuel Production from Chlorella sp.: A Comprehensive Review

  • Sabeela Beevi Ummalyma
  • Dinabandhu Sahoo
  • Ashok Pandey


Microalgal biofuels are environmentally friendly fuels regarded as a potential alternative to fossil fuels. Algae are fast-growing photosynthetic microscopic plants compared with terrestrial ones. Microalgae exhibit an inherent potential to accumulate various metabolites inside a cell, which can be utilised for various industrial applications. Cultivation of microalgae for biofuel and high-value chemical applications is costly due to the consumption of substantial freshwater nutrients, such as nitrogen and phosphorous. Mass production of algal biomass in freshwaters is an impractical approach due to increasing demands in the future. Multi-application of microalgae for wastewater treatment for low-cost biomass for biofuel and high-value chemicals and bioremediation can be a viable alternative to various stipulations, such as lowering cost of nutrients, freshwater resources and energy. This chapter discusses the various types of wastewater remediation and industrial-scale bioreactors for biofuel production and wastewater remediation by microalgae Chlorella sp., respectively. In addition, the life cycle assessment of bioremediation and its future perspectives are analysed.


Microalgae Wastewater Chlorella sp. Bioremediation Biofuel 



The authors are grateful to the Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, for the necessary help and support for this work. We appreciate the generous help of Md. Asraful Alam, PhD from GIEC-CAS for improving the language and expressions of the chapter.


  1. Abdel-Raou N, Al-Homaidan AA, Ibraheem IBM. Agricultural importance of algae. African J Biotech. 2012;11(54):11648–58.Google Scholar
  2. Abreu AP, Fernandes B, Vicente AA, Teixeira J, Dragone G. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour Technol. 2012;118:61–6.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Ahluwalia SS, Goyal D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol. 2017;98(12):2243–57.CrossRefGoogle Scholar
  4. Alam MA, Wan C, Zhao XQ, Chen L, Chang JS, Bai FW. Enhanced removal of Zn2+ or Cd2+ by the self-flocculating microalga Chlorella vulgaris JSC-7. J Hazard Mater. 2015;298:38–45.CrossRefGoogle Scholar
  5. Álvarez-Díaz PD, Ruiz J, Arbib Z, Barragán J, Garrido-Pérez MC, Perales JA. Freshwater microalgae selection for simultaneous wastewater nutrient removal and lipid production. Algal Res. 2017;24:477–85.CrossRefGoogle Scholar
  6. Amin S. Review on biofuel oil and gas production processes from microalgae. Energ Conver Manag. 2009;50(7):1834–40.CrossRefGoogle Scholar
  7. Azadi P, Brownbridge G, Mosbach A, Smallbone A, Bhave O, Inderwildi, Kraft M. The carbon footprint and nonrenewable energy demand of algae-derived biodiesel. Appl Energ. 2014;113:1632–44.CrossRefGoogle Scholar
  8. Bailey JE, Ollis DF. Biochemical engineering fundamentals. Chem Eng Edu. 1976;19:168–71.Google Scholar
  9. Behrens P. Photobioreactors and fermentors: the light and dark sides of growing algae. In: Algal culturing techniques. Burlington: Elsevier Academic; 2005. p. 189–204.Google Scholar
  10. Binnal P, Babu PN. Optimization of environmental factors affecting tertiary treatment of municipal wastewater by Chlorella protothecoides in a lab scale photobioreactor. Water Process Eng. 2017;17:290–29.CrossRefGoogle Scholar
  11. Biswas B, Kumar AA, Bisht Y, Sing R, Kumar J, Bhaskar T. Effects of temperature and solvent on hydrothermal liquefaction of Sargassum tenerrimum algae. Bioresour Technol. 2017;242:344–50.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Brennan L, Owende P. Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev. 2010;14(2):557–77.CrossRefGoogle Scholar
  13. Cheah WY, Show PL, Chang JS, Ling TC, Juan JC. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour Technol. 2014;184:190–201.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chen CY, Chang YH. Engineering strategies for enhancing C. vulgaris ESP-31 lipid production using effluents of coke-making wastewater. J Biosci Bioeng. 2018; Scholar
  15. Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol. 2011;102(1):71–81.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chen CY, Lu IC, Nagarajan D, Chang CH, Ng IS, Lee DJ, Chang JS. A highly efficient two-stage cultivation strategy for lutein production using heterotrophic culture of Chlorella sorokiniana MB-1-M12. Bioresour Technol. 2018;253:141–7.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chinnasamy S, Bhatnagar A, Claxton R, Das K. Biomass and bioenergy production potential of microalgae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium. Bioresour Technol. 2010;101(17):6751–60.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 2008;26(3):126–31.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Chiu SY, Kao CY, Chen TY, Chang YB, Kuo CM, Lin CS. Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresour Technol. 2015;184:179–89.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chokshi K, Pancha I, Ghosh A, Mishra S. Nitrogen starvation-induced cellular crosstalk of ROS-scavenging antioxidants and phytohormone enhanced the biofuel potential of green microalga Acutodesmus dimorphus. Biotechnol Biofuels. 2017;10:60. Scholar
  21. Clark J, Deswarte F. In: Stevens CV, editor. Introduction to chemicals from biomass, Wiley series in renewable resources: John Wiley & Sons; 2008.Google Scholar
  22. Cooney M, Maynard N, Cannizzaro C, Benemann J. Two-phase anaerobic digestion for production of hydrogen–methane mixtures. Bioresour Technol. 2007;98(14):2641–51.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Dahmani S, Zerrouki D, Ramanna L, Rawat I, Bux F. Cultivation of Chlorella pyrenoidosa in outdoor open raceway pond using domestic wastewater as medium in arid desert region. Bioresour Technol. 2016;219:749–52.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Daneshvar E, Antikainen L, Koutra E, Kornaros M, Bhatnagar A. Investigation on the feasibility of Chlorella vulgaris cultivation in a mixture of pulp and aquaculture effluents: treatment of wastewater and lipid extraction. Bioresour Technol. 2018;255:104–10.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Daneshvara E, Antikainen L, Koutr E, Kornaros M, Bhatnagar A. Investigation on the feasibility of Chlorella vulgaris cultivation in a mixture of pulp and aquaculture effluents: treatment of wastewater and lipid extraction. Bioresour Technol. 2018;255:104–10.CrossRefGoogle Scholar
  26. Demirbas A. Oily products from mosses and algae via pyrolysis. Energy Sources, Part A. 2006;28(10):933–40.CrossRefGoogle Scholar
  27. Ebrahimian A, Kariminia HR, Vosoughi M. Lipid production in mixotrophic cultivation of Chlorella vulgaris in a mixture of primary and secondary municipal wastewater. Renew Energy. 2014;71:502–8.CrossRefGoogle Scholar
  28. Falkowski P, Raven JA. Aquatic photosynthesis, vol. 375. Malden: Blackwell Science; 1997.Google Scholar
  29. Farooq W, Lee YC, Ryu BG, Kim BH, Kim HS, Choi YE, Yang JW. Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresour Technol. 2013;132:230–8.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Farrelly DJ, Everard CD, Fagan CC, McDonnell KP. Carbon sequestration and the role of biological carbon mitigation: a review. Renew Sustain Energy Rev. 2013;21:712–27.CrossRefGoogle Scholar
  31. Fu L, Cui X, Li Y, Xu L, Zhang C, Xiong R, Zhou D, Crittenden JC. Excessive phosphorus enhances Chlorella regularis lipid production under nitrogen starvation stress during glucose heterotrophic cultivation. Chem Eng. 2017;330:566–72.CrossRefGoogle Scholar
  32. Ganeshkumara V, Subashchandrabose SR, Dharmarajan R, Venkateswarlu K, Naidu R, Megharaj M. Use of mixed wastewaters from piggery and winery for nutrient removal and lipid production by Chlorella sp. MM3. Bioresour Technol. 2018;256:254–8.CrossRefGoogle Scholar
  33. de Godos I, González C, Becares E, García-Encina PA, Muñoz R. Simultaneous nutrients and carbon removalduring pretreated swine slurry degradation in a tubular biofilm photobioreactor. Appl Microbiol Biotechnol. 2009;82:187–94.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Goyal H, Seal D, Saxena R. Bio-fuels from thermochemical conversion of renewable resources: a review. Rene Sust Energ Rev. 2008;12(2):504–17.CrossRefGoogle Scholar
  35. Grierson S, Strezov V, Ellem G, Mcgregor R, Herbertson J. Thermal characterisation of microalgae under slow pyrolysis conditions. J Anal Appl Pyrolysis. 2009;85(1):118–23.CrossRefGoogle Scholar
  36. Harun R, Singh M, Forde GM, Danquah MK. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev. 2010a;14(3):1037–47.CrossRefGoogle Scholar
  37. Harun R, Danquah MK, Forde GM. Microalgal biomass as a fermentation feedstock for bioethanol production. Chem Technol Biotechnol. 2010b;85(2):199–203.Google Scholar
  38. Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol. 2013;135:191–8.PubMedPubMedCentralGoogle Scholar
  39. Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P. The future of anaerobic digestion and biogas utilization. Bioresour Technol. 2009;100(22):5478–84.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Hongyang S, Yalei Z, Chunmin Z, Xuefei Z, Jinpeng L. Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresour Technol. 2011;102:9884–90.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Hu B, Min M, Zhou W, Li Y, Mohr M, Cheng Y, Ruan R. Influence of exogenous CO2 on biomass and lipid accumulation of microalgae Auxenochlorella protothecoides cultivated in concentrated municipal wastewater. Appl Biochem Biotechnol. 2012;166(7):1661–73.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hu X, Zhou J, Liu G, Gui B. Selection of microalgae for high CO2 fixation efficiency and lipid accumulation from ten Chlorella strains using municipal wastewater. Environ Sci. 2016;46:83–91.CrossRefGoogle Scholar
  43. Jehlee A, Khongkliang P, Thong SO. Biogas Production from Chlorella sp. TISTR 8411 biomass cultivated on biogas effluent of seafood processing wastewater. Energy Procedia. 2017;138:853–7.CrossRefGoogle Scholar
  44. Jena U, Das K. Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energ fuels. 2011;25(11):5472–82.CrossRefGoogle Scholar
  45. Jiang L, Ji Y, Hu W, Pei H, Nie C, Ma G, Song M. Adjusting irradiance to enhance growth and lipid production of Chlorella vulgaris cultivated with monosodium glutamate wastewater. J Photochem Photobiol B. 2016;162:619–24.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Kang RJ, Wang J, Shi DJ, Cong W, Cai ZL, Ouyang F. Interactions between organic and inorganic carbon sources during mixotrophic cultivation of Synechococcus sp. Biotechnol Lett. 2004;26:1429–32.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Kapaun E, Reisser W. A chitin-like glycan in the cell wall of a Chlorella sp. (Chlorococcales, Chlorophyceae). Plant. 1995;197:577–82.Google Scholar
  48. Kassim MA, Meng TK. Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production. Sci Total Environ. 2017;584–585:1–9. Scholar
  49. Kiran B, Pathak K, Kumar R, Deshmukh D. Cultivation of Chlorella sp. IM-01 in municipal wastewater for simultaneous nutrient removal and energy feedstock production. Ecol Eng. 2014;73:326–30.CrossRefGoogle Scholar
  50. Kong WB, Yang H, Cao YT, Song H, Hua SF, Xia CG. Effect of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic culture. Food Technol Biotechnol. 2013;51(1):62–9.Google Scholar
  51. Kuchitsu K, Oh-hama T, Tsuzuki M, Miyachi S. Detection and characterization of acidic compartments (vacuoles) in Chlorella vulgaris 11 h cells by 31 P-in vivo NMR spectroscopy and cytochemical techniques. Arch Microbiol. 1987;148:83–7.CrossRefGoogle Scholar
  52. Kumar P, Prajapati SK, Malik A, Vijay VK. Cultivation of native algal consortium in semi-continuous pilot scale raceway pond for greywater treatment coupled with potential methane production. Environ Chem Eng. 2017;5(6):5581–7.CrossRefGoogle Scholar
  53. Kuo CM, Chen TY, Lin TH, Kao CY, Lai JT, Chang JS, Lin CS. Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production. Bioresour Technol. 2015;194:326–33.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Lam ML, Yusoff MI, Uemura Y, Lim JW, Gek KC, Lee KT, Ong HC. Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: growth condition and kinetic studies. Renew Energy. 2017;103:197–207.CrossRefGoogle Scholar
  55. Lananan F, Abdul Hamid SH, Sakinah Din WN, Ali N, Khatoon H, Jusoh A, Endut A. Symbiotic bioremediation of aquaculture wastewater in reducing ammonia and phosphorus utilizing Effective Microorganism (EM-1) and microalgae (Chlorella sp.). Int Biodeterior Biodegrad. 2014;95:127–34.CrossRefGoogle Scholar
  56. Li YG, Xu L, Huang YM, Wang F, Guo C, Liu CZ. Microalgal biodiesel in China: opportunities and challenges. Appl Energ. 2011;88(10):3432–7.CrossRefGoogle Scholar
  57. Li Y, Zhou W, Hu B, Min M, Chen P, Ruan RR. Effect of light intensity on algal biomass accumulation and biodiesel production for mixotrophic strains Chlorella kessleri and Chlorella protothecoides cultivated in highly concentrated municipal wastewater. Biotechnol Bioeng. 2012;109:2222–9.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Liu J, Chen F. Biology and industrial applications of chlorella: advances and prospects. Adv Biochem Eng Biotechnol. 2016;153:1–35.PubMedPubMedCentralGoogle Scholar
  59. Lu Q, Zhou W, Min M, Ma X, Chandra C, Doan YTT, Ma Y, Zheng H, Cheng S, Griffith R, Chen P, Chen C, Urriola PE, Shurson GC, Gislerød HR, Ruan R. Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production. Bioresour Technol. 2015;198:189–97.PubMedCrossRefPubMedCentralGoogle Scholar
  60. McKendry P. Energy production from biomass (part 2): conversion technologies. Bioresour Technol. 2002;83(1):47–54.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Marjakangas JM, Chen CY, Lakaniemi AM, Puhakka JA, Whang LM, Chang JS. Simultaneous nutrient removal and lipid production with Chlorella vulgaris on sterilized and non-sterilized anaerobically pretreated piggery wastewater. Biochem Eng J. 2015;103(2015):177–84.CrossRefGoogle Scholar
  62. Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev. 2010;14(1):217–32.CrossRefGoogle Scholar
  63. McGinn PJ, Dickinson KE, Bhatti S, Frigon JC, Guiot SR, O’Leary SJ. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynth Res. 2011;109(1–3):231–47.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Miao X, Wu Q. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol. 2004;110(1):85–93.PubMedCrossRefPubMedCentralGoogle Scholar
  65. NREL. A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae Close-Out Report; 2006.
  66. Omari Z, Zerrouki D, Djaafri M. Open pond culture of green algae Chlorella sp. using municipal waste water as medium in an Arid Desert. In: Kallel A, Ksibi M, Ben Dhia H, Khelifi N, editors. Recent advances in Environmental Science from the Euro-Mediterranean and surrounding regions. Advances in science, Technology and innovation (IEREK Interdisciplinary Series for Sustainable Development) EMCEI 2017. Cham: Springer; 2018.Google Scholar
  67. Park KC, Whitney C, McNichol JC, Dickinson KE, Mac QS, Skrupski BP, Zou J, Wilson KE, O’Leary SJB, McGinn PJ. Mixotrophic and photoautotrophic cultivation of 14 microalgae isolates from Saskatchewan, Canada: potential applications for wastewater remediation for biofuel production. J Appl Phycol. 2012;24:339–48.CrossRefGoogle Scholar
  68. Pittman JK, Dean AP, Osundeko O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol. 2011;102(1):17–25.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Patil V, Tran KQ, Giselrod HR. Towards sustainable production of biofuels from microalgae. IntJ Mol Sci. 2008;9(7):1188–95.CrossRefGoogle Scholar
  70. Perez-Garcia O, De-Bashan LE, Hernandez JP, Bashan Y. Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic, and mixotrophic cultivation of Chlorella vulgaris immobilized with Azospirillum brasilense. Phycologia. 2010;46(4):800–12.CrossRefGoogle Scholar
  71. Perez-Garcia O, Escalante FM, de-Bashan LE, Bashan Y. Heterotrophic cultures of microalgae: metabolism and potential products. Water Res. 2011;45(1):11–36.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Peterson AA, Vogel F, Lachance RP, Fröling M, Antal MJ, Tester JW. Thermochemical biofuel production in hydrothermal media: a review of sub-and supercritical water technologies. Energy Environ Sci. 2008;1(1):32–65.CrossRefGoogle Scholar
  73. Qin L, Shu Q, Wang ZM, Shang CH, Zhu SN, Xu J, Li RQ, Zhu LD, Yuan ZH. Cultivation of Chlorella vulgaris in dairy wastewater pretreated by UV irradiation and sodium hypochlorite. Appl Biochem Biotechnol. 2014;172:1121–30.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Qin L, Wei D, Wang ZM, Alam MA. Advantage assessment of mixed culture of Chlorella vulgaris and Yarrowia lipolytica for treatment of liquid digestate of yeast industry and cogeneration of biofuel feedstock. Appl Biochem Biotechnol. 2018:1–14.Google Scholar
  75. Ramsundar P, Guldhe A, Singh P, Bux F. Assessment of municipal wastewaters at various stages of treatment process as potential growth media for Chlorella sorokiniana under different modes of cultivation. Bioresour Technol. 2017;227:82–92.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Razzak SA, Hossain MM, Lucky RA, Bassi AS. Integrated CO2 Capture, Wastewater Treatment and Biofuel Production by Microalgae Culturing-A Review. Rene Sust Energ Rev. 2013;27:622–53.CrossRefGoogle Scholar
  77. Ren H, Tuo J, Addy MM, Zhang R, Lu Q, Anderson E, Chen P, Ruan R. Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal. Bioresour Technol. 2017;245(A):1130–8.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Sheehan J, Camobreco V, Duffield J, Graboski M, Shapouri H. An overview of biodiesel and petroleum diesel life cycles. National Renewable Energy Laboratory (NREL) and US Department of Energy (USDOE); 1998.Google Scholar
  79. Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol. 2002;83(1):1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Sun X, Wang C, Li Z, Wang W, Tong Y, Wei J. Microalgal cultivation in wastewater from the fermentation effluent in Riboflavin (B2) manufacturing for biodiesel production. Bioresour Technol. 2013;143:499–504.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Tan X, Chu H, Zhang Y, Yang L, Zhao F, Zhou X. Chlorella pyrenoidosa cultivation using anaerobic digested starch processing wastewater in an airlift circulation photobioreactor. Bioresour Technol. 2014;170:538–48.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Tan XB, Lam MK, Uemura Y, Lim JW, Wong CY, Lee KT. Cultivation of microalgae for biodiesel production: a review on upstream and downstream processing. Chin J Chem Eng. 2018;26:17–30.CrossRefGoogle Scholar
  83. Tana XB, Zhaoa XC, Zhang YL, Zhoua YY, Yang LB, Zhang WW. Enhanced lipid and biomass production using alcohol wastewater as carbon source for Chlorella pyrenoidosa cultivation in anaerobically digested starch wastewater in outdoors. Bioresour Technol. 2018;247:784–93.CrossRefGoogle Scholar
  84. Ummalyma SB, Sukumaran RK. Cultivation of the fresh water microalga Chlorococcum sp. RAP13 in sea water for producing oil suitable for biodiesel. J Appl Phycol. 2015;27(1):141–7.CrossRefGoogle Scholar
  85. Venkata Mohan S (2010) Waste to renewable energy: a sustainable and green approach towards production of biohydrogen by acidogenic fermentation. In: Singh, Om V, Steve, Harvey (Eds.), Sustainable biotechnology: renewable resources and new perspectives. New York, Springer, pp. 129–164.CrossRefGoogle Scholar
  86. Venkata Mohan S, Rohit MV, Chiranjeevi P, Chandra R, Navaneeth B. Heterotrophic microalgae cultivation to synergize biodiesel production with waste remediation: progress and perspectives. Bioresour Technol. 2015;184:169–78.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Wan M, Liu P, Xia J, Rosenberg JN, Oyler G, Betenbaugh MJ, Nie Z, Qiu G. The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Appl Microbiol Biotechnol. 2011;91:835–44.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, Wang Y, Ruan R. Cultivation of Green Algae Chlorella sp. in Different Wastewaters from Municipal Wastewater Treatment Plant. Appl Biochem Biotechnol. 2010;162:1174–86.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Wen Y, He Y, Ji X, Li S, Chen L, Zhou Y, Wang M, Chen B. Isolation of an indigenous Chlorella vulgaris from swine wastewater and characterization of its nutrient removal ability in undiluted sewage. Bioresour Technol. 2017;243:247–53.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Willke T, Vorlop KD. Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol. 2004;66(2):131–42.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Wu YL, Li L, Gan NQ, Zheng LL, Ma HY, Shan K, Liu J, Xiao BD, Song LR. Seasonal dynamics of water bloomforming Microcystismorphospecies and the associated extracellular microcystin concentrations in large, shallow, eutrophic Dianchi Lake. J Environ Sci. 2014;26(9):1921–9.CrossRefGoogle Scholar
  92. Xie T, Xia Y, Zeng Y, Li X. Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: over-compensation strategy. Bioresour Technol. 2017;233:247–55.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Xuan J, Leung MK, Leung DY, Ni M. A review of biomass-derived fuel processors for fuel cell systems. Renew Sustain Energy Rev. 2009;13(6):1301–13.CrossRefGoogle Scholar
  94. Yamamoto M, Fujishita M, Hirata A, Kawano S. Regeneration and maturation of daughter cell walls in the autospore forming green alga Chlorella vulgaris (Chlorophyta,Trebouxiophyceae). J Plant Res. 2004;117:257–64.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Yamamoto M, Kurihara I, Kawano S. Late type of daughter cell wall synthesis in one of the Chlorellaceae, Para chlorella kessleri (Chlorophyta, Trebouxiophyceae). Planta. 2005;221:766–75.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Yang JS, Huang JX, Ni JR. Mathematical modeling of batch fermentation of Zoogloea sp. GY3 used for synthesizing polyhydroxyalkanoates. J Chem Technol Biotechnol. 2006;81:789–93.CrossRefGoogle Scholar
  97. Yang S, Liu G, Meng Y, Wang P, Zhou S, Shan H. Utilization of xylose as a carbon source for mixotrophic growth of Scenedesmus obliquus. Bioresour Technol. 2015;172:180–5.CrossRefGoogle Scholar
  98. Yen HW, Brune DE. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol. 2007;98(1):130–4.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Yen HW, Chen H, Chen CY, Ho SH, Lee DJ, Chang SH. Microalgae-based biorefinery – From biofuels to natural products. Bioresour Technol. 2011;135:166–74.CrossRefGoogle Scholar
  100. Yvonne N, Tomas K. Cell wall development, microfibril and pyrenoid structure in type strains of Chlorella vulgaris, C. kessleri, C. sorokiniana compared with C. luteoviridis (Trebouxiophyceae, Chlorophyta). Archiv Hydrobiol. 2000;100:95–105.Google Scholar
  101. Zhu L, Wang Z, Shu Q, Takala J, Hiltunen E, Feng P, Yuan Z. Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res. 2013;47(13):4294–302.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Zilinskas BA. Stabilization by glutaraldehyde fixation of chloroplast membranes against inhibitors of oxygen evolution. Z Pflanzenphysiol. 1976;77(4):302–14.CrossRefGoogle Scholar
  103. Znad H, Al Ketife AMD, Judd S, AlMomani F, Vuthaluru HB. Bioremediation and nutrient removal from wastewater by Chlorella vulgaris. Ecol Eng. 2018;110:1–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sabeela Beevi Ummalyma
    • 1
  • Dinabandhu Sahoo
    • 1
  • Ashok Pandey
    • 2
  1. 1.Institute of Bioresources and Sustainable Development (IBSD)A National Institute Under Department of Biotechnology Government of India TakyelpatImphalIndia
  2. 2.CSIR-Indian Institute for Toxicology ResearchLucknowIndia

Personalised recommendations