Advertisement

The Culture Technology for Freshwater and Marine Microalgae

  • Ayesha Shahid
  • Sana Malik
  • Md. Asraful Alam
  • Nazia Nahid
  • Muhammad Aamer MehmoodEmail author
Chapter

Abstract

Microalgae are promising eco-friendly source of food, feed, biofuels, and chemicals. There has been substantial progress at the lab and industrial scales to develop efficient and sustainable microalgae culturing techniques. However, several constraints must be addressed to make the overall process economically viable. Chemo-genetics elements can play a pivotal role in achieving the commercial goals because microalgae grow more efficiently in high concentrations of essential nutrients like nitrogen, phosphorus, and carbon in addition to enhance by-product formation. Moreover, alteration in culturing conditions also activates lipid accumulation. Recent strategies have combined these approaches to enhance lipid accumulation and along with enhanced biomass productivity. It is necessary to optimize inoculum production and culture management to avoid contamination, especially at commercial scales. Furthermore, prevailing outdoor conditions of rainfall, variable temperature, and irradiation, which are entirely different from small lab-scale facilities, pose additional challenges during outdoor cultivation. This chapter highlights the nutritional requirements of culturing media and their impact along with possible challenges on microalgae cultivation to ensure the stable and high productivities of large-scale cultures. Media recycling not only reduces the dependency on freshwater but also increases the economic viability of the process. Recent advances regarding media recycling and strategies to control biological contaminants are also discussed.

References

  1. Afzal I, Shahid A, Ibrahim M, Liu T, Nawaz M, Mehmood MA. Microalgae: a promising feedstock for energy and high-value products. In: Algae based polymers, blends, and composites. San Diego: Elsevier; 2017. p. 55.CrossRefGoogle Scholar
  2. Alam MA, Vandamme D, Chun W, Zhao X, Foubert I, Wang Z, Muylaert K, Yuan Z. Bioflocculation as an innovative harvesting strategy for microalgae. Rev Environ Sci Biotechnol. 2016;15(4):573–83.CrossRefGoogle Scholar
  3. Alam MA, Wan C, Zhao X-Q, Chen L-J, Chang J-S, Bai F-W. Enhanced removal of Zn2+ or Cd2+ by the flocculating Chlorella vulgaris JSC-7. J Hazard Mater. 2015;289:38–45.Google Scholar
  4. Alam MA, Wang Z, Yuan Z. Generation and harvesting of microalgae biomass for biofuel production. In: Prospects and challenges in algal biotechnology. Singapore: Springer; 2017. p. 89–111.CrossRefGoogle Scholar
  5. Arumugam M, Agarwal A, Arya MC, Ahmed Z. Influence of nitrogen sources on biomass productivity of microalgae Scenedesmus bijugatus. Bioresour Technol. 2013;131:246–9.PubMedCrossRefGoogle Scholar
  6. Aziz N, Prasad R, Ibrahim AI, Ahmed AI. Promising applications for the production of biofuels through algae. In: Microbial biotechnology. Singapore: Springer; 2017. p. 81–103.CrossRefGoogle Scholar
  7. Barra L, Chandrasekaran R, Corato F, Brunet C. The challenge of ecophysiological biodiversity for biotechnological applications of marine microalgae. Mar Drugs. 2014;12(3):1641–75.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bartley ML, Boeing WJ, Daniel D, Dungan BN, Schaub T. Optimization of environmental parameters for Nannochloropsis salina growth and lipid content using the response surface method and invading organisms. J Appl Phycol. 2016;28(1):15–24.CrossRefGoogle Scholar
  9. Bibi R, Ahmad Z, Imran M, Hussain S, Ditta A, Mahmood S, Khalid A. Algal bioethanol production technology: a trend towards sustainable development. Renew Sustain Energ Rev. 2017;71:976–85.CrossRefGoogle Scholar
  10. Bilanovic D, Andargatchew A, Kroeger T, Shelef G. Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations–response surface methodology analysis. Energy Convers Manag. 2009;50(2):262–7.CrossRefGoogle Scholar
  11. Bohutskyi P, Kligerman DC, Byers N, Nasr LK, Cua C, Chow S, Su C, Tang Y, Betenbaugh MJ, Bouwer EJ. Effects of inoculum size, light intensity, and dose of anaerobic digestion centrate on growth and productivity of Chlorella and Scenedesmus microalgae and their poly-culture in primary and secondary wastewater. Algal Res. 2016;19:278–90.CrossRefGoogle Scholar
  12. Borowitzka M. Biotechnological & environmental applications of microalgae. Biotechnological & environmental applications of microalgae[Online] Murdoch University. 2006.Google Scholar
  13. Bueno M, MarcÃlio T, Morocho AL, Valà M. Cosmetic attributes of algae – a review. Algal Res. 2017;25:483–7.CrossRefGoogle Scholar
  14. Cai T, Park SY, Li Y. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sustain Energ Rev. 2013;19:360–9.CrossRefGoogle Scholar
  15. Carney LT, Lane TW. Parasites in algae mass culture. Front Microbiol. 2014;5:278.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chandra R, Parra R, MN Iqbal H. Phycobiliproteins: a novel green tool from marine origin blue-green algae and red algae. Protein Pept Lett. 2017;24(2):118–25.PubMedCrossRefGoogle Scholar
  17. Chandra TS, Deepak R, Kumar MM, Mukherji S, Chauhan V, Sarada R, Mudliar S. Evaluation of indigenous fresh water microalga Scenedesmus obtusus for feed and fuel applications: effect of carbon dioxide, light and nutrient sources on growth and biochemical characteristics. Bioresour Technol. 2016;207:430–9.CrossRefGoogle Scholar
  18. Chen B, Wan C, Mehmood MA, Chang J-S, Bai F, Zhao X. Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products– a review. Bioresour Technol. 2017;244:1198–206.CrossRefGoogle Scholar
  19. Chen C-Y, Yeh K-L, Aisyah R, Lee D-J, Chang J-S. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol. 2011;102(1):71–81.PubMedCrossRefGoogle Scholar
  20. Chen G, Zhao L, Qi Y. Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review. Appl Energy. 2015;137:282–91.CrossRefGoogle Scholar
  21. Chisti Y. Microalgae as sustainable cell factories. Environ Eng Manag J. 2006;5(3):261–74.CrossRefGoogle Scholar
  22. Cho S, Luong TT, Lee D, Oh Y-K, Lee T. Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. Bioresour Technol. 2011;102(18):8639–45.PubMedCrossRefGoogle Scholar
  23. Chu F-F, Chu P-N, Cai P-J, Li W-W, Lam PK, Zeng RJ. Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Bioresour Technol. 2013;134:341–6.CrossRefGoogle Scholar
  24. Chu F-F, Chu P-N, Shen X-F, Lam PK, Zeng RJ. Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress. Bioresour Technol. 2014;152:241–6.PubMedCrossRefGoogle Scholar
  25. Crofcheck C, Crocker M. Application of recycled media and algae-based anaerobic digestate in Scenedesmus cultivation. J Renew Sustain Energy. 2016;8(1):1.Google Scholar
  26. Cuellar-Bermudez SP, Garcia-Perez JS, Rittmann BE, Parra-Saldivar R. Photosynthetic bioenergy utilizing CO2: an approach on flue gases utilization for third generation biofuels. J Clean Prod. 2015;98:53–65.CrossRefGoogle Scholar
  27. da Costa F, Le Grand F, Quere C, Bougaran G, Cadoret JP, Robert R, Soudant P. Effects of growth phase and nitrogen limitation on biochemical composition of two strains of Tisochrysis lutea. Algal Res. 2017;27:177–89.CrossRefGoogle Scholar
  28. Daneshvar E, Santhosh C, Antikainen E, Bhatnagar A. Microalgal growth and nitrate removal efficiency in different cultivation conditions: Effect of macro and micronutrients and salinity. J Environ Chem Eng. 2018;6(2):1848–54.CrossRefGoogle Scholar
  29. Day JG, Gong Y, Hu Q. Microzooplanktonic grazers–A potentially devastating threat to the commercial success of microalgal mass culture. Algal Res. 2017;27:356–65.CrossRefGoogle Scholar
  30. Day JG, Slocombe SP, Stanley MS. Overcoming biological constraints to enable the exploitation of microalgae for biofuels. Bioresour Technol. 2012;109:245–51.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Dayananda C, Sarada R, Rani MU, Shamala T, Ravishankar G. Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass Bioenergy. 2007;31(1):87–93.CrossRefGoogle Scholar
  32. Deng X-Y, Gao K, Addy M, Li D, Zhang R-C, Lu Q, Ma Y-W, Cheng Y-L, Chen P, Liu Y-H. Cultivation of Chlorella vulgaris on anaerobically digested swine manure with daily recycling of the post-harvest culture broth. Bioresour Technol. 2018;247:716–23.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Depraetere O, Pierre G, Noppe W, Vandamme D, Foubert I, Michaud P, Muylaert K. Influence of culture medium recycling on the performance of Arthrospira platensis cultures. Algal Res. 2015;10:48–54.CrossRefGoogle Scholar
  34. Discart V, Bilad M, Marbelia L, Vankelecom I. Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle. Bioresour Technol. 2014;152:321–8.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Dixon C, Wilken LR. Green microalgae biomolecule separations and recovery. Bioresour Bioprocess. 2018;5(1):14.CrossRefGoogle Scholar
  36. El Gamal AA. Biological importance of marine algae. Saudi Pharm J. 2010;18(1):1–25.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Elrayies GM. Microalgae: prospects for greener future buildings. Renew Sustain Energ Rev. 2018;81:1175–91.CrossRefGoogle Scholar
  38. Elser JJ. Phosphorus: a limiting nutrient for humanity? Curr Opin Biotechnol. 2012;23(6):833–8.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Farooq W, Moon M, B-g R, Suh WI, Shrivastav A, Park MS, Mishra SK, Yang J-W. Effect of harvesting methods on the reusability of water for cultivation of Chlorella vulgaris, its lipid productivity and biodiesel quality. Algal Res. 2015a;8:1–7.CrossRefGoogle Scholar
  40. Farooq W, Suh WI, Park MS, Yang J-W. Water use and its recycling in microalgae cultivation for biofuel application. Bioresour Technol. 2015b;184:73–81.PubMedCrossRefGoogle Scholar
  41. Feng P-Z, Zhu L-D, Qin X-X, Li Z-H. Water footprint of biodiesel production from microalgae cultivated in photobioreactors. J Environ Eng. 2016;142(12):04016067.CrossRefGoogle Scholar
  42. Fret J, Roef L, Blust R, Diels L, Tavernier S, Vyverman W, Michiels M. Reuse of rejuvenated media during laboratory and pilot scale cultivation of Nannochloropsis sp. Algal Res. 2017;27:265–73.CrossRefGoogle Scholar
  43. Fret J, Roef L, Diels L, Tavernier S, Vyverman W, Michiels M. Implementation of flocculation and sand filtration in medium recirculation in a closed microalgae production system. Algal Res. 2016;13:116–25.CrossRefGoogle Scholar
  44. Fu L, Cui X, Li Y, Xu L, Zhang C, Xiong R, Zhou D, Crittenden JC. Excessive phosphorus enhances Chlorella regularis lipid production under nitrogen starvation stress during glucose heterotrophic cultivation. Chem Eng J. 2017;330:566–72.CrossRefGoogle Scholar
  45. Gan K, Mou X, Xu Y, Wang H. Application of ozonated piggery wastewater for cultivation of oil-rich Chlorella pyrenoidosa. Bioresour Technol. 2014;171:285–90.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Gaspar JGF. Optimization of the composition and recycling strategy of the culture medium for industrial production of microalgae. Lisboa: Instituto Superior Técnico, Universidade de Lisboa; 2014.Google Scholar
  47. Genin SN, Aitchison JS, Allen DG. Photobioreactor-based energy sources. In: Nano and biotech based materials for energy building efficiency. Cham: Springer; 2016. p. 429–55.CrossRefGoogle Scholar
  48. Gill SS, Mehmood MA, Ahmad N, Ibrahim M, Rashid U, Ali S, Nehdi IA. Strain selection, growth productivity and biomass characterization of novel microalgae isolated from fresh and wastewaters of upper Punjab. Pak Front Life Sci. 2016;9(3):190–200.CrossRefGoogle Scholar
  49. Gill SS, Mehmood MA, Rashid U, Ibrahim M, Saqib A, Tabassum MR. Waste-water treatment coupled with biodiesel production using microalgae: a bio-refinery approach. Pak J Life Soc Sci. 2013;11(3):179–89.Google Scholar
  50. González-López C, Cerón-García M, Fernández-Sevilla J, González-Céspedes A, Camacho-Rodríguez J, Molina-Grima E. Medium recycling for Nannochloropsis gaditana cultures for aquaculture. Bioresour Technol. 2013;129:430–8.PubMedCrossRefGoogle Scholar
  51. Greenwell H, Laurens L, Shields R, Lovitt R, Flynn K. Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface. 2009;7(46):703–26.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Griffiths MJ, Harrison ST. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol. 2009;21(5):493–507.CrossRefGoogle Scholar
  53. Guldhe A, Kumari S, Ramanna L, Ramsundar P, Singh P, Rawat I, Bux F. Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. J Environ Manag. 2017;203:299–315.CrossRefGoogle Scholar
  54. Hadj-Romdhane F, Jaouen P, Pruvost J, Grizeau D, Van Vooren G, Bourseau P. Development and validation of a minimal growth medium for recycling Chlorella vulgaris culture. Bioresour Technol. 2012;123:366–74.PubMedCrossRefGoogle Scholar
  55. Hesse M, Santos B, Selesu N, Corrêa D, Mariano A, Vargas J, Vieira R. Optimization of flocculation with tannin-based flocculant in the water reuse and lipidic production for the cultivation of Acutodesmus obliquus. Sep Sci Technol. 2017;52(5):936–42.CrossRefGoogle Scholar
  56. Ho S-H, Chen C-Y, Chang J-S. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol. 2012;113:244–52.PubMedCrossRefGoogle Scholar
  57. Ho S-H, Chen C-Y, Lee D-J, Chang J-S. Perspectives on microalgal CO2-emission mitigation systems—a review. Biotechnol Adv. 2011;29(2):189–98.PubMedCrossRefGoogle Scholar
  58. Ho S-H, Chiu S-Y, Kao C-Y, Chen T-Y, Chang Y-B, Chang J-S, Lin C-S. Ferrofluid-assisted rapid and directional harvesting of marine microalgal Chlorella sp. used for biodiesel production. Bioresour Technol. 2017;244:1337–40.PubMedCrossRefGoogle Scholar
  59. Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang J-S. Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E. Bioresour Technol. 2013;135:157–65.PubMedCrossRefGoogle Scholar
  60. Igou T, Van Ginkel SW, Penalver-Argueso P, Fu H, Narode A, Cheruvu S, Zhang Q, Hassan F, Woodruff F, Chen Y. Effect of centrifugation on water recycling and algal growth to enable algae biodiesel production. Water Environ Res. 2014;86(12):2325–9.PubMedCrossRefGoogle Scholar
  61. Ji M-K, Yun H-S, Park S, Lee H, Park Y-T, Bae S, Ham J, Choi J. Effect of food wastewater on biomass production by a green microalga Scenedesmus obliquus for bioenergy generation. Bioresour Technol. 2015;179:624–8.PubMedCrossRefGoogle Scholar
  62. John RP, Anisha G, Nampoothiri KM, Pandey A. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol. 2011;102(1):186–93.PubMedCrossRefGoogle Scholar
  63. Kim G, Mujtaba G, Lee K. Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production. Algae. 2016;31(3):257–66.CrossRefGoogle Scholar
  64. Kim G, Mujtaba G, Rizwan M, Lee K. Environmental stress strategies for stimulating lipid production from microalgae for biodiesel. Appl Chem Eng. 2014a;25(25):553–8.CrossRefGoogle Scholar
  65. Kim J, Ryu B-G, Lee Y-J, Han J-I, Kim W, Yang J-W. Continuous harvest of marine microalgae using electrolysis: effect of pulse waveform of polarity exchange. Bioprocess Biosyst Eng. 2014b;37(7):1249–59.PubMedCrossRefGoogle Scholar
  66. Komolafe O, Orta SBV, Monje-Ramirez I, Noguez IY, Harvey AP, Ledesma MTO. Biodiesel production from indigenous microalgae grown in wastewater. Bioresour Technol. 2014;154:297–304.PubMedCrossRefGoogle Scholar
  67. Kong Q-x, Li L, Martinez B, Chen P, Ruan R. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol. 2010;160(1):9.PubMedCrossRefGoogle Scholar
  68. Kumar D, Singh B, Sharma YC. Challenges and opportunities in commercialization of algal biofuels. In: Algal biofuels. Springer Switzerland; 2017. p. 421–50.Google Scholar
  69. Kunjapur AM, Eldridge RB. Photobioreactor design for commercial biofuel production from microalgae. Ind Eng Chem Res. 2010;49(8):3516–26.CrossRefGoogle Scholar
  70. Lam TP, Lee T-M, Chen C-Y, Chang J-S. Strategies to control biological contaminants during microalgal cultivation in open ponds. Bioresour Technol. 2017;252:180–7.PubMedCrossRefGoogle Scholar
  71. Lammers PJ, Huesemann M, Boeing W, Anderson DB, Arnold RG, Bai X, Bhole M, Brhanavan Y, Brown L, Brown J. Review of the cultivation program within the national alliance for advanced biofuels and bioproducts. Algal Res. 2017;22:166–86.CrossRefGoogle Scholar
  72. Liang K, Zhang Q, Gu M, Cong W. Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. J Appl Phycol. 2013;25(1):311–8.CrossRefGoogle Scholar
  73. Lin T-S, Wu J-Y. Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Bioresour Technol. 2015;184:100–7.PubMedCrossRefGoogle Scholar
  74. Loftus SE, Johnson ZI. Cross-study analysis of factors affecting algae cultivation in recycled medium for biofuel production. Algal Res. 2017;24:154–66.CrossRefGoogle Scholar
  75. Lowrey J, Armenta RE, Brooks MS. Nutrient and media recycling in heterotrophic microalgae cultures. Appl Microbiol Biotechnol. 2016;100(3):1061–75.PubMedCrossRefGoogle Scholar
  76. Maeda Y, Yoshino T, Matsunaga T, Matsumoto M, Tanaka T. Marine microalgae for production of biofuels and chemicals. Curr Opin Biotechnol. 2018;50:111–20.PubMedCrossRefGoogle Scholar
  77. Markou G, Vandamme D, Muylaert K. Ammonia inhibition on Arthrospira platensis in relation to the initial biomass density and pH. Bioresour Technol. 2014;166:259–65.PubMedCrossRefGoogle Scholar
  78. Massa M, Buono S, Langellotti AL, Castaldo L, Martello A, Paduano A, Sacchi R, Fogliano V. Evaluation of anaerobic digestates from different feedstocks as growth media for Tetradesmus obliquus, Botryococcus braunii, Phaeodactylum tricornutum and Arthrospira maxima. New Biotechnol. 2017;36:8–16.CrossRefGoogle Scholar
  79. Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev. 2010;14(1):217–32.CrossRefGoogle Scholar
  80. McBride RC, Lopez S, Meenach C, Burnett M, Lee PA, Nohilly F, Behnke C. Contamination management in low cost open algae ponds for biofuels production. Ind Biotechnol. 2014;10(3):221–7.CrossRefGoogle Scholar
  81. Mennaa FZ, Arbib Z, Perales JA. Urban wastewater treatment by seven species of microalgae and an algal bloom: biomass production, N and P removal kinetics and harvestability. Water Res. 2015;83:42–51.PubMedCrossRefGoogle Scholar
  82. Meyer N, Bigalke A, Kaulfuß A, Pohnert G. Strategies and ecological roles of algicidal bacteria. FEMS Microbiol Rev. 2017;41(6):880–99.PubMedCrossRefGoogle Scholar
  83. Milledge JJ. Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol. 2011;10(1):31–41.CrossRefGoogle Scholar
  84. Mooij PR, Stouten GR, van Loosdrecht MC, Kleerebezem R. Ecology-based selective environments as solution to contamination in microalgal cultivation. Curr Opin Biotechnol. 2015;33:46–51.PubMedCrossRefGoogle Scholar
  85. Murphy CF, Allen DT. Energy-water nexus for mass cultivation of algae. Environ Sci Technol. 2011;45(13):5861–8.PubMedCrossRefGoogle Scholar
  86. Muthuraj M, Kumar V, Palabhanvi B, Das D. Evaluation of indigenous microalgal isolate Chlorella sp. FC2 IITG as a cell factory for biodiesel production and scale up in outdoor conditions. J Ind Microbiol Biotechnol. 2014;41(3):499–511.PubMedCrossRefGoogle Scholar
  87. Olguín EJ. Dual purpose microalgae–bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnol Adv. 2012;30(5):1031–46.PubMedCrossRefGoogle Scholar
  88. Park S, Kim J, Yoon Y, Park Y, Lee T. Blending water-and nutrient-source wastewaters for cost-effective cultivation of high lipid content microalgal species Micractinium inermum NLP-F014. Bioresour Technol. 2015;198:388–94.PubMedCrossRefGoogle Scholar
  89. Płaczek M, Patyna A, Witczak S. Technical evaluation of photobioreactors for microalgae cultivation. In: E3S web of conferences, EDP Sciences, p. 02032; 2017.CrossRefGoogle Scholar
  90. Podder M, Majumder C. Arsenic toxicity to Chlorella pyrenoidosa and its phycoremediation. Acta Ecol Sin. 2016;36(4):256–68.CrossRefGoogle Scholar
  91. Qin L, Shu Q, Wang Z, Shang C, Zhu S, Xu J, Li R, Zhu L, Yuan Z. Cultivation of Chlorella vulgaris in dairy wastewater pretreated by UV irradiation and sodium hypochlorite. Appl Biochem Biotechnol. 2014;172(2):1121–30.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Raja R, Hemaiswarya S, Kumar NA, Sridhar S, Rengasamy R. A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol. 2008;34(2):77–88.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Ramaraj R, Tsai DD-W, Chen PH. Carbon dioxide fixation of freshwater microalgae growth on natural water medium. Ecol Eng. 2015;75:86–92.CrossRefGoogle Scholar
  94. Ramsundar P, Guldhe A, Singh P, Bux F. Assessment of municipal wastewaters at various stages of treatment process as potential growth media for Chlorella sorokiniana under different modes of cultivation. Bioresour Technol. 2017;227:82–92.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Richmond A. Handbook of microalgal culture: biotechnology and applied phycology. New York: Wiley; 2008.Google Scholar
  96. Rocha G, Pinto F, Melão M, Lombardi A. Growing Scenedesmus quadricauda in used culture media: is it viable? J Appl Phycol. 2015;27(1):171–8.CrossRefGoogle Scholar
  97. Rodolfi L, Zittelli GC, Barsanti L, Rosati G, Tredici MR. Growth medium recycling in Nannochloropsis sp. mass cultivation. Biomol Eng. 2003;20(4–6):243–8.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Ruangsomboon S. Effects of different media and nitrogen sources and levels on growth and lipid of green microalga Botryococcus braunii KMITL and its biodiesel properties based on fatty acid composition. Bioresour Technol. 2015;191:377–84.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Ruangsomboon S, Prachom N, Sornchai P. Enhanced growth and hydrocarbon production of Botryococcus braunii KMITL 2 by optimum carbon dioxide concentration and concentration-dependent effects on its biochemical composition and biodiesel properties. Bioresour Technol. 2017;244:1358–66.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Russel M, Liu C, Alam A, Wang F, Yao J, Daroch M, Shah MR, Wang Z. Exploring an in situ LED-illuminated isothermal micro-calorimetric method to investigating the thermodynamic behavior of Chlorella vulgaris during CO2 bio-fixation. Environ Sci Pollut Res. 2018:1–9.Google Scholar
  101. Sabia A, Baldisserotto C, Biondi S, Marchesini R, Tedeschi P, Maietti A, Giovanardi M, Ferroni L, Pancaldi S. Re-cultivation of Neochloris oleoabundans in exhausted autotrophic and mixotrophic media: the potential role of polyamines and free fatty acids. Appl Microbiol Biotechnol. 2015;99(24):10597–609.PubMedCrossRefGoogle Scholar
  102. Sahu AK, Siljudalen J, Trydal T, Rusten B. Utilisation of wastewater nutrients for microalgae growth for anaerobic co-digestion. J Environ Manag. 2013;122:113–20.CrossRefGoogle Scholar
  103. Schmidt JJ, Gagnon GA, Jamieson RC. Microalgae growth and phosphorus uptake in wastewater under simulated cold region conditions. Ecol Eng. 2016;95:588–93.CrossRefGoogle Scholar
  104. Sforza E, Calvaruso C, La Rocca N, Bertucco A. Luxury uptake of phosphorus in Nannochloropsis salina: Effect of P concentration and light on P uptake in batch and continuous cultures. Biochem Eng J. 2018;134:69–79.CrossRefGoogle Scholar
  105. Shahid A, Khan AZ, Liu T, Malik S, Afzal I, Mehmood MA. Production and processing of algal biomass. In: Algae based polymers, blends, and composites. San Diego: Elsevier; 2017. p. 273–99.CrossRefGoogle Scholar
  106. Shang C, Wang W, Zhu S, Wang Z, Qin L, Alam MA, Xie J, Yuan Z. The responses of two genes encoding phytoene synthase (Psy) and phytoene desaturase (Pds) to nitrogen limitation and salinity up-shock with special emphasis on carotenogenesis in Dunaliella parva. Algal Res. 2018;32:1–10.CrossRefGoogle Scholar
  107. Sharma KK, Schuhmann H, Schenk PM. High lipid induction in microalgae for biodiesel production. Energies. 2012;5(5):1532–53.CrossRefGoogle Scholar
  108. Shen X-F, Liu J-J, Chauhan AS, Hu H, Ma L-L, Lam PK, Zeng RJ. Combining nitrogen starvation with sufficient phosphorus supply for enhanced biodiesel productivity of Chlorella vulgaris fed on acetate. Algal Res. 2016;17:261–7.CrossRefGoogle Scholar
  109. Shen X-F, Liu J-J, Chu F-F, Lam PK, Zeng RJ. Enhancement of FAME productivity of Scenedesmus obliquus by combining nitrogen deficiency with sufficient phosphorus supply in heterotrophic cultivation. Appl Energy. 2015;158:348–54.CrossRefGoogle Scholar
  110. Sing SF, Isdepsky A, Borowitzka M, Lewis D. Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp. in raceway ponds under increasing salinity: a novel protocol for commercial microalgal biomass production. Bioresour Technol. 2014;161:47–54.CrossRefGoogle Scholar
  111. Sirakov I, Velichkova K, Stoyanova S, Staykov Y. The importance of microalgae for aquaculture industry. Int J Fish Aquat Stud. 2015;2(4):81–4.Google Scholar
  112. Smith VH, Crews T. Applying ecological principles of crop cultivation in large-scale algal biomass production. Algal Res. 2014;4:23–34.CrossRefGoogle Scholar
  113. Solovchenko A, Verschoor AM, Jablonowski ND, Nedbal L. Phosphorus from wastewater to crops: an alternative path involving microalgae. Biotechnol Adv. 2016;34(5):550–64.PubMedCrossRefGoogle Scholar
  114. Spence WH. Regrowth of Chlorella sorokiniana on recycled media with with replenished nutrients. 2016Google Scholar
  115. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng. 2006;101(2):87–96.PubMedCrossRefGoogle Scholar
  116. Su C-H, Chien L-J, Gomes J, Lin Y-S, Yu Y-K, Liou J-S, Syu R-J. Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. J Appl Phycol. 2011;23(5):903–8.CrossRefGoogle Scholar
  117. Suganya T, Varman M, Masjuki H, Renganathan S. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sustain Energ Rev. 2016;55:909–41.CrossRefGoogle Scholar
  118. Suleria HAR, Osborne S, Masci P, Gobe G. Marine-based nutraceuticals: An innovative trend in the food and supplement industries. Mar Drugs. 2015;13(10):6336–51.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Sun X, Cao Y, Xu H, Liu Y, Sun J, Qiao D, Cao Y. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresour Technol. 2014;155:204–12.CrossRefGoogle Scholar
  120. Sydney EB, Sturm W, de Carvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, Soccol CR. Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol. 2010;101(15):5892–6.PubMedCrossRefGoogle Scholar
  121. Umar A, Caldwell GS, Lee JG. Foam flotation can remove and eradicate ciliates contaminating algae culture systems. Algal Res. 2018;29:337–42.CrossRefGoogle Scholar
  122. Varshney P, Beardall J, Bhattacharya S, Wangikar PP. Isolation and biochemical characterisation of two thermophilic green algal species-Asterarcys quadricellulare and Chlorella sorokiniana, which are tolerant to high levels of carbon dioxide and nitric oxide. Algal Res. 2018;30:28–37.CrossRefGoogle Scholar
  123. Wang H, Zhang W, Chen L, Wang J, Liu T. The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresour Technol. 2013;128:745–50.PubMedCrossRefGoogle Scholar
  124. Wang L, Yuan D, Li Y, Ma M, Hu Q, Gong Y. Contaminating microzooplankton in outdoor microalgal mass culture systems: An ecological viewpoint. Algal Res. 2016;20:258–66.CrossRefGoogle Scholar
  125. Wang Y, Gong Y, Dai L, Sommerfeld M, Zhang C, Hu Q. Identification of harmful protozoa in outdoor cultivation of Chlorella and the use of ultrasonication to control contamination. Algal Res. 2018;31:298–310.CrossRefGoogle Scholar
  126. Wijffels RH. Potential of sponges and microalgae for marine biotechnology. Trends Biotechnol. 2008;26(1):26–31.PubMedCrossRefGoogle Scholar
  127. Wolkers H, Barbosa M, Kleinegris DM, Bosma R, Wijffels RH. Microalgae: the green gold of the future. Wageningen: Propress; 2011.Google Scholar
  128. Xin L, Hong-ying H, Ke G, Ying-xue S. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol. 2010;101(14):5494–500.PubMedCrossRefGoogle Scholar
  129. Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y. Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol. 2011;102(1):159–65.PubMedCrossRefGoogle Scholar
  130. Yap BH, Crawford SA, Dagastine RR, Scales PJ, Martin GJ. Nitrogen deprivation of microalgae: effect on cell size, cell wall thickness, cell strength, and resistance to mechanical disruption. J Ind Microbiol Biotechnol. 2016;43(12):1671–80.PubMedCrossRefGoogle Scholar
  131. Yen H-W, Hu I-C, Chen C-Y, Chang J-S. Design of photobioreactors for algal cultivation. In: Biofuels from algae. San Diego: Elsevier; 2014. p. 23–45.CrossRefGoogle Scholar
  132. Zhang X, Lu Z, Wang Y, Wensel P, Sommerfeld M, Hu Q. Recycling Nannochloropsis oceanica culture media and growth inhibitors characterization. Algal Res. 2016;20:282–90.CrossRefGoogle Scholar
  133. Zhao B, Su Y. Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew Sustain Energ Rev. 2014;31:121–32.CrossRefGoogle Scholar
  134. Zheng N, Ding N, Gao P, Han M, Liu X, Wang J, Sun L, Fu B, Wang R, Zhou J. Diverse algicidal bacteria associated with harmful bloom-forming Karenia mikimotoi in estuarine soil and seawater. Sci Total Environ. 2018;631:1415–20.PubMedCrossRefGoogle Scholar
  135. Zhou W, Chen P, Min M, Ma X, Wang J, Griffith R, Hussain F, Peng P, Xie Q, Li Y. Environment-enhancing algal biofuel production using wastewaters. Renew Sustain Energ Rev. 2014;36:256–69.CrossRefGoogle Scholar
  136. Zhou W, Li Y, Min M, Hu B, Zhang H, Ma X, Li L, Cheng Y, Chen P, Ruan R. Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production. Appl Energy. 2012;98:433–40.CrossRefGoogle Scholar
  137. Zhu L, Takala J, Hiltunen E, Wang Z. Recycling harvest water to cultivate Chlorella zofingiensis under nutrient limitation for biodiesel production. Bioresour Technol. 2013;144:14–20.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ayesha Shahid
    • 1
  • Sana Malik
    • 1
  • Md. Asraful Alam
    • 2
  • Nazia Nahid
    • 1
  • Muhammad Aamer Mehmood
    • 1
    • 3
    Email author
  1. 1.Bioenergy Research Centre, Department of Bioinformatics & BiotechnologyGovernment College University FaisalabadFaisalabadPakistan
  2. 2.CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy ConversionChinese Academy of SciencesGuangzhouChina
  3. 3.School of BioengineeringSichuan University of Science & EngineeringZigongChina

Personalised recommendations