Advertisement

Anaerobic Digestion of Microalgae Biomass for Methane Production

  • Hossain M. Zabed
  • Xianghui QiEmail author
  • Junhua Yun
  • Huanhuan Zhang
Chapter

Abstract

Biomethane is one of the most promising biofuels that is produced from a wide variety of biomass using anaerobic digestion (AD) process. Microalgae, among these biomass sources, have received significant attention since the past years due to their rapid growth rate, capability of accumulating different biomolecules, effective CO2 sequestration, and requirement of relatively small land area. However, despite these advantages of microalgae and potential of AD, conversion of microalgae into methane is bottlenecked by the low biomass loading and recalcitrance of digestible components, low C/N ratio, and interferences of various factors. Eventually, it is necessary to make effective efforts for addressing the shortcomings of the overall process to achieve a state-of-the-art technology for commercial scale methane production. This chapter will discuss the major aspects of biomethane production from microalgae focusing on the potential of these biomass sources for methane production, technical aspects in the conversion of microalgae into methane, and factors affecting methane yield in AD of microalgae.

Keywords

Biofuels Microalgae Biomethane Pretreatment Microalgae cultivation Anaerobic digestion Biogas Methanogenesis 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31571806), China Postdoctoral Science Foundation (Grant No. 2017M621657), National Key R & D Program (Grant No. 2017YFC1600806), and high-level talents project of Six Talent Peaks in Jiangsu Province (Grant No. SWYY-018).

References

  1. Adarme OFH, Baêta BEL, Lima DRS, Gurgel LVA, de Aquino SF. Methane and hydrogen production from anaerobic digestion of soluble fraction obtained by sugarcane bagasse ozonation. Ind Crop Prod. 2017;109:288–99.  https://doi.org/10.1016/j.indcrop.2017.08.040.Google Scholar
  2. Alam MA, Vandamme D, Chun W, Zhao X, Foubert I, Wang Z, Muylaert K, Yuan Z. Bioflocculation as an innovative harvesting strategy for microalgae. Rev Environ Sci Biotechnol. 2016;15(4):573–83.Google Scholar
  3. Angelidaki I, Ahring BK. Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. Water Sci Technol. 2000;41(3):189–94.PubMedGoogle Scholar
  4. Annonymous. Stoichiometry of the anaerobic digestion process. 2018. http://www.suscon.org/pdfs/cowpower/biomethaneSourcebook/Appendices_A-F.pdf. Accessed 31 Mar 2018.
  5. Babarro J, Reiriz M, Labarta U. Influence of preservation techniques and freezing storage time on biochemical composition and spectrum of fatty acids of Isochrysis galbana clone T-ISO. Aquac Res. 2001;32(7):565–72.Google Scholar
  6. Balat M. Potential alternatives to edible oils for biodiesel production – a review of current work. Energy Convers Manag. 2011;52(2):1479–92.  https://doi.org/10.1016/j.enconman.2010.10.011.Google Scholar
  7. Barros AI, Gonçalves AL, Simões M, Pires JC. Harvesting techniques applied to microalgae: a review. Renew Sustain Energ Rev. 2015;41:1489–500.Google Scholar
  8. Bosma R, van Spronsen WA, Tramper J, Wijffels RH. Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol. 2003;15(2–3):143–53.Google Scholar
  9. Brown D, Shi J, Li Y. Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresour Technol. 2012;124:379–86.  https://doi.org/10.1016/j.biortech.2012.08.051.PubMedGoogle Scholar
  10. Buswell AM, Boruff C. The relation between the chemical composition of organic matter and the quality and quantity of gas produced during sludge digestion. Sew Work J. 1932;4:454–60.Google Scholar
  11. Cardeña R, Moreno G, Bakonyi P, Buitrón G. Enhancement of methane production from various microalgae cultures via novel ozonation pretreatment. Chem Eng J. 2017;307:948–54.  https://doi.org/10.1016/j.cej.2016.09.016.Google Scholar
  12. Chen PH, Oswald WJ. Thermochemical treatment for algal fermentation. Environ Int. 1998;24(8):889–97.  https://doi.org/10.1016/S0160-4120(98)00080-4.Google Scholar
  13. Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: a review. Bioresour Technol. 2008;99(10):4044–64.Google Scholar
  14. Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306.  https://doi.org/10.1016/j.biotechadv.2007.02.001.Google Scholar
  15. Christenson L, Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv. 2011;29(6):686–702.Google Scholar
  16. Collins G, Woods A, McHugh S, Carton MW, O’flaherty V. Microbial community structure and methanogenic activity during start-up of psychrophilic anaerobic digesters treating synthetic industrial wastewaters. FEMS Microbiol Ecol. 2003;46(2):159–70.PubMedGoogle Scholar
  17. Cordero Esquivel B, Voltolina Lobina D, Correa Sandoval F. Biochemical composition of two diatoms after different preservation techniques. Comp Biochem Physiol B. 1993;105:369–73.Google Scholar
  18. Córdova O, Santis J, Ruiz-Fillipi G, Zuñiga ME, Fermoso FG, Chamy R. Microalgae digestive pretreatment for increasing biogas production. Renew Sustain Energ Rev. 2018;82:2806–13.  https://doi.org/10.1016/j.rser.2017.10.005.Google Scholar
  19. Cucchiella F, D’Adamo I. Technical and economic analysis of biomethane: a focus on the role of subsidies. Energy Convers Manag. 2016;119:338–51.Google Scholar
  20. Das P, Lei W, Aziz SS, Obbard JP. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresour Technol. 2011;102(4):3883–7.PubMedGoogle Scholar
  21. De Bere L. Anaerobic digestion of solid waste: state-of-the-art. Water Sci Technol. 2000;41(3):283–90.Google Scholar
  22. Deconinck N, Muylaert K, Ivens W, Vandamme D. Innovative harvesting processes for microalgae biomass production: a perspective from patent literature. Algal Res. 2018;31:469–77.  https://doi.org/10.1016/j.algal.2018.01.016.Google Scholar
  23. Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol. 2008;19(3):235–40.  https://doi.org/10.1016/j.copbio.2008.05.007.PubMedGoogle Scholar
  24. Donk EV, Lürling M, Hessen D, Lokhorst G. Altered cell wall morphology in nutrient-deficient phytoplankton and its impact on grazers. Limnol Oceanogr. 1997;42(2):357–64.Google Scholar
  25. Ehimen EA, Connaughton S, Sun Z, Carrington GC. Energy recovery from lipid extracted, transesterified and glycerol codigested microalgae biomass. GCB Bioenergy. 2009;1(6):371–81.Google Scholar
  26. El-Mashad HM, Zeeman G, Van Loon WK, Bot GP, Lettinga G. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Bioresour Technol. 2004;95(2):191–201.PubMedGoogle Scholar
  27. Fasaei F, Bitter JH, Slegers PM, van Boxtel AJB. Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res. 2018;31:347–62.  https://doi.org/10.1016/j.algal.2017.11.038.Google Scholar
  28. Fernández J, Pérez M, Romero LI. Effect of substrate concentration on dry mesophilic anaerobic digestion of organic fraction of municipal solid waste (OFMSW). Bioresour Technol. 2008;99(14):6075–80.PubMedGoogle Scholar
  29. Franke-Whittle IH, Confalonieri A, Insam H, Schlegelmilch M, Körner I. Changes in the microbial communities during co-composting of digestates. Waste Manag. 2014;34(3):632–41.PubMedPubMedCentralGoogle Scholar
  30. Frigon JC, Guiot SR. Biomethane production from starch and lignocellulosic crops: A comparative review. Biofuels Bioprod Biorefin. 2010;4(4):447–58.Google Scholar
  31. Ghosh S, Henry M, Sajjad A, Mensinger M, Arora J. Pilot-scale gasification of municipal solid wastes by high-rate and two-phase anaerobic digestion (TPAD). Water Sci Technol. 2000;41(3):101–10.PubMedGoogle Scholar
  32. Gomez-Romero J, Gonzalez-Garcia A, Chairez I, Torres L, Garcia-Peña EI. Selective adaptation of an anaerobic microbial community: biohydrogen production by co-digestion of cheese whey and vegetables fruit waste. Int J Hydrog Energy. 2014;39(24):12541–50.Google Scholar
  33. González-Fernández C, Molinuevo-Salces B, García-González MC. Evaluation of anaerobic codigestion of microalgal biomass and swine manure via response surface methodology. Appl Energy. 2011;88(10):3448–53.  https://doi.org/10.1016/j.apenergy.2010.12.035.Google Scholar
  34. González-Fernández C, Sialve B, Bernet N, Steyer J. Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass Bioenerg. 2012;40:105–11.Google Scholar
  35. Grabner M, Wieser W, Lackner R. The suitability of frozen and freeze-dried zooplankton as food for fish larvae: a biochemical test program. Aquaculture. 1981;26(1–2):85–94.Google Scholar
  36. Guendouz J, Buffiere P, Cacho J, Carrere M, Delgenes J-P. High-solids anaerobic digestion: comparison of three pilot scales. Water Sci Technol. 2008;58(9):1757–63.PubMedGoogle Scholar
  37. Guiot SR, Frigon J-C. Anaerobic digestion as an effective biofuel production technology. In: Hallenbeck PC, editor. Microbial technologies in advanced biofuels production. Boston: Springer; 2012. p. 143–61.  https://doi.org/10.1007/978-1-4614-1208-3_9.Google Scholar
  38. Harith Z, Yusoff F, Shariff M, Ariff A. Effect of different separation techniques and storage temperatures on the viability of marine microalgae, Chaetoceros calcitrans, during storage. Biotechnology. 2010;9(3):387–91.Google Scholar
  39. Hartmann H, Ahring BK. Strategies for the anaerobic digestion of the organic fraction of municipal solid waste: an overview. Water Sci Technol. 2006;53(8):7–22.PubMedGoogle Scholar
  40. Harun R, Singh M, Forde GM, Danquah MK. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energ Rev. 2010;14(3):1037–47.Google Scholar
  41. Hincapié Gómez E, Marchese AJ. An ultrasonically enhanced inclined settler for microalgae harvesting. Biotechnol Prog. 2015;31(2):414–23.PubMedGoogle Scholar
  42. Ho S-H, Nagarajan D, N-q R, Chang J-S. Waste biorefineries—integrating anaerobic digestion and microalgae cultivation for bioenergy production. Curr Opin Biotechnol. 2018;50:101–10.PubMedGoogle Scholar
  43. Jankowska E, Sahu AK, Oleskowicz-Popiel P. Biogas from microalgae: review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renew Sustain Energ Rev. 2017;75:692–709.Google Scholar
  44. Kröger M, Müller-Langer F. Review on possible algal-biofuel production processes. Biofuels. 2012;3(3):333–49.Google Scholar
  45. Lakaniemi A-M, Hulatt CJ, Thomas DN, Tuovinen OH, Puhakka JA. Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Biotechnol Biofuels. 2011;4(1):34.PubMedPubMedCentralGoogle Scholar
  46. Lardon L, Helias A, Sialve B, Steyer J-P, Bernard O. Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol. 2009;43(17):6475–81.Google Scholar
  47. Lee J-S, Lee J-P. Review of advances in biological CO2 mitigation technology. Biotechnol Bioprocess Eng. 2003;8(6):354.Google Scholar
  48. Lee Y-C, Lee K, Oh Y-K. Recent nanoparticle engineering advances in microalgal cultivation and harvesting processes of biodiesel production: a review. Bioresour Technol. 2015;184:63–72.PubMedGoogle Scholar
  49. Li Y, Park SY, Zhu J. Solid-state anaerobic digestion for methane production from organic waste. Renew Sustain Energ Rev. 2011;15(1):821–6.  https://doi.org/10.1016/j.rser.2010.07.042.Google Scholar
  50. Lü F, Ji J, Shao L, He P. Bacterial bioaugmentation for improving methane and hydrogen production from microalgae. Biotechnol Biofuels. 2013;6(1):92.PubMedPubMedCentralGoogle Scholar
  51. Malej A, Harris RP. Inhibition of copepod grazing by diatom exudates: a factor in the development of mucus aggregates? Mar Ecol Prog Ser. 1993:33–42.Google Scholar
  52. Martin D, Potts L, Heslop V. Reaction mechanisms in solid-state anaerobic digestion: 1. The reaction front hypothesis. Process Saf Environ Prot. 2003;81(3):171–9.Google Scholar
  53. Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energ Rev. 2010;14(1):217–32.  https://doi.org/10.1016/j.rser.2009.07.020.Google Scholar
  54. Millati R, Syamsiah S, Niklasson C, Cahyanto MN, Ludquist K, Taherzadeh MJ. Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. Bioresources. 2011;6(4):5224–59.Google Scholar
  55. Mussgnug JH, Klassen V, Schlüter A, Kruse O. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol. 2010;150(1):51–6.  https://doi.org/10.1016/j.jbiotec.2010.07.030.PubMedGoogle Scholar
  56. Pakarinen O, Tähti H, Rintala J. One-stage H2 and CH4 and two-stage H2 + CH4 production from grass silage and from solid and liquid fractions of NaOH pre-treated grass silage. Biomass Bioenerg. 2009;33(10):1419–27.Google Scholar
  57. Pang Y, Liu Y, Li X, Wang K, Yuan H. Improving biodegradability and biogas production of corn stover through sodium hydroxide solid state pretreatment. Energy Fuel. 2008;22(4):2761–6.Google Scholar
  58. Park S, Li Y. Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. Bioresour Technol. 2012;111:42–8.PubMedGoogle Scholar
  59. Parkin GF, Owen WF. Fundamentals of anaerobic digestion of wastewater sludges. J Environ Eng. 1986;112(5):867–920.Google Scholar
  60. Penaud V, Delgenès JP, Moletta R. Thermo-chemical pretreatment of a microbial biomass: influence of sodium hydroxide addition on solubilization and anaerobic biodegradability. Enzym Microb Technol. 1999;25(3):258–63.  https://doi.org/10.1016/S0141-0229(99)00037-X.Google Scholar
  61. Peng S, Hou C, Wang J, Chen T, Liu X, Yue Z. Performance of anaerobic co-digestion of corn straw and algae biomass from lake Chaohu. Trans Chinese Soc Agric Eng. 2012;28(15):173–8.Google Scholar
  62. Pittman JK, Dean AP, Osundeko O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol. 2011;102(1):17–25.PubMedGoogle Scholar
  63. Polakovičová G, Kušnír P, Nagyová S, Mikulec J. Process integration of algae production and anaerobic digestion. In: 15th international conference on process integration, modelling and, 2012.Google Scholar
  64. Prajapati SK, Kaushik P, Malik A, Vijay VK. Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges. Biotechnol Adv. 2013;31(8):1408–25.PubMedGoogle Scholar
  65. Pulz O. Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol. 2001;57(3):287–93.PubMedGoogle Scholar
  66. Ramamoorthy S, Sulochana N. Enhancement of biogas production using algae. Curr Sci. 1989;58(11):646–7.Google Scholar
  67. Rapport J, Zhang R, Jenkins BM, Williams RB. Current anaerobic digestion technologies used for treatment of municipal organic solid waste. University of California, Davis, Contractor Report to the California Integrated Waste Management Board 236; 2008.Google Scholar
  68. Ras M, Lardon L, Bruno S, Bernet N, Steyer J-P. Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour Technol. 2011;102(1):200–6.PubMedGoogle Scholar
  69. Rawat I, Ranjith Kumar R, Mutanda T, Bux F. Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy. 2011;88(10):3411–24.  https://doi.org/10.1016/j.apenergy.2010.11.025.Google Scholar
  70. Richardson B, Orcutt D, Schwertner H, Martinez CL, Wickline HE. Effects of nitrogen limitation on the growth and composition of unicellular algae in continuous culture. Appl Microbiol. 1969;18(2):245–50.PubMedPubMedCentralGoogle Scholar
  71. Richmond A, Cheng-Wu Z, Zarmi Y. Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell-growth inhibition. Biomol Eng. 2003;20(4–6):229–36.PubMedGoogle Scholar
  72. Roubaud A, Favrat D. Improving performances of a lean burn cogeneration biogas engine equipped with combustion prechambers. Fuel. 2005;84(16):2001–7.Google Scholar
  73. Saxena V, Tandon S, Singh K. Anaerobic digestion of green filamentous algae and waterhyacinth for methane production. Natl Acad Sci India, Sci Lett. 1984;7(9):283–4.Google Scholar
  74. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res. 2008;1(1):20–43.Google Scholar
  75. Shi X-S, Yuan X-Z, Wang Y-P, Zeng S-J, Qiu Y-L, Guo R-B, Wang L-S. Modeling of the methane production and pH value during the anaerobic co-digestion of dairy manure and spent mushroom substrate. Chem Eng J. 2014;244:258–63.Google Scholar
  76. Shin SG, Lee S, Lee C, Hwang K, Hwang S. Qualitative and quantitative assessment of microbial community in batch anaerobic digestion of secondary sludge. Bioresour Technol. 2010;101(24):9461–70.PubMedGoogle Scholar
  77. Shuba ES, Kifle D. Microalgae to biofuels: ‘Promising’ alternative and renewable energy, review. Renew Sustain Energ Rev. 2018;81:743–55.Google Scholar
  78. Sialve B, Bernet N, Bernard O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv. 2009;27(4):409–16.  https://doi.org/10.1016/j.biotechadv.2009.03.001.PubMedGoogle Scholar
  79. Sindhu R, Binod P, Pandey A. Biological pretreatment of lignocellulosic biomass–an overview. Bioresour Technol. 2016;199:76–82.PubMedGoogle Scholar
  80. Sreekrishnan T, Kohli S, Rana V. Enhancement of biogas production from solid substrates using different techniques––a review. Bioresour Technol. 2004;95(1):1–10.PubMedGoogle Scholar
  81. Stephens E, Ross IL, Hankamer B. Expanding the microalgal industry–continuing controversy or compelling case? Curr Opin Chem Biol. 2013;17(3):444–52.PubMedGoogle Scholar
  82. Tan XB, Lam MK, Uemura Y, Lim JW, Wong CY, Lee KT. Cultivation of microalgae for biodiesel production: a review on upstream and downstream processing. Chin J Chem Eng. 2018;26(1):17–30.  https://doi.org/10.1016/j.cjche.2017.08.010.Google Scholar
  83. Tijani H, Abdullah N, Yuzir A. Integration of microalgae biomass in biomethanation systems. Renew Sustain Energ Rev. 2015;52:1610–22.  https://doi.org/10.1016/j.rser.2015.07.179.Google Scholar
  84. Tillberg JE, Rowley J. Physiological and structural effects of phosphorus starvation on the unicellular green alga Scenedesmus. Physiol Plant. 1989;75(3):315–24.Google Scholar
  85. Ueno Y, Fukui H, Goto M. Operation of a two-stage fermentation process producing hydrogen and methane from organic waste. Environ Sci Technol. 2007;41(4):1413–9.PubMedGoogle Scholar
  86. Varel VH, Chen TH, Hashimoto AG. Thermophilic and mesophilic methane production from anaerobic degradation of the cyanobacterium Spirulina maxima. Resour Conserv Recycl. 1988;1(1):19–26.  https://doi.org/10.1016/0921-3449(88)90004-3.Google Scholar
  87. Wan C, Li Y. Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv. 2012;30(6):1447–57.PubMedGoogle Scholar
  88. Wang P, Wang H, Qiu Y, Ren L, Jiang B. Microbial characteristics in anaerobic digestion process of food waste for methane production – a review. Bioresour Technol. 2018;248. (Part A):29–36.Google Scholar
  89. Ward AJ, Lewis DM, Green FB. Anaerobic digestion of algae biomass: a review. Algal Res. 2014;5:204–14.  https://doi.org/10.1016/j.algal.2014.02.001.Google Scholar
  90. Williams PJB, Laurens LM. Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci. 2010;3(5):554–90.Google Scholar
  91. Xu R, Zhang K, Liu P, Khan A, Xiong J, Tian F, Li X. A critical review on the interaction of substrate nutrient balance and microbial community structure and function in anaerobic co-digestion. Bioresour Technol. 2018;247:1119–27.  https://doi.org/10.1016/j.biortech.2017.09.095.PubMedGoogle Scholar
  92. Yan C, Zhang L, Luo X, Zheng Z. Influence of influent methane concentration on biogas upgrading and biogas slurry purification under various LED (light-emitting diode) light wavelengths using Chlorella sp. Energy. 2014;69:419–26.Google Scholar
  93. Yang Y, Gao K. Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). J Appl Phycol. 2003;15(5):379–89.Google Scholar
  94. Yang Z, Guo R, Xu X, Fan X, Luo S. Hydrogen and methane production from lipid-extracted microalgal biomass residues. Int J Hydrog Energy. 2011;36(5):3465–70.Google Scholar
  95. Yang L, Xu F, Ge X, Li Y. Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew Sustain Energ Rev. 2015;44:824–34.  https://doi.org/10.1016/j.rser.2015.01.002.Google Scholar
  96. Yen H-W, Brune DE. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol. 2007;98(1):130–4.PubMedGoogle Scholar
  97. Yen H-W, Chiu C-H. The influences of aerobic-dark and anaerobic-light cultivation on CoQ10 production by Rhodobacter sphaeroides in the submerged fermenter. Enzym Microb Technol. 2007;41(5):600–4.Google Scholar
  98. Yu Z, Schanbacher FL. Production of methane biogas as fuel through anaerobic digestion. In: Singh OV, Harvey SP, editors. Sustainable biotechnology. Dordrecht: Springer; 2010. p. 105–27.Google Scholar
  99. Yuan X, Wang M, Park C, Sahu AK, Ergas SJ. Microalgae growth using high-strength wastewater followed by anaerobic co-digestion. Water Environ Res. 2012;84(5):396–404.PubMedGoogle Scholar
  100. Zabed H, Boyce A, Faruq G, Sahu J. A comparative evaluation of agronomic performance and kernel composition of normal and high sugary corn genotypes (Zea mays L.) grown for dry-grind ethanol production. Ind Crop Prod. 2016a;94:9–19.Google Scholar
  101. Zabed H, Faruq G, Boyce AN, Sahu JN, Ganesan P. Evaluation of high sugar containing corn genotypes as viable feedstocks for decreasing enzyme consumption during dry-grind ethanol production. J Taiwan Inst Chem Eng. 2016b;58:467–75.Google Scholar
  102. Zabed H, Sahu J, Boyce A, Faruq G. Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sustain Energ Rev. 2016c;66:751–74.Google Scholar
  103. Zabed H, Boyce AN, Sahu J, Faruq G. Evaluation of the quality of dried distiller’s grains with solubles for normal and high sugary corn genotypes during dry–grind ethanol production. J Clean Prod. 2017a;142:4282–93.Google Scholar
  104. Zabed H, Sahu JN, Suely A. Bioethanol production from lignocellulosic biomass: An overview of pretreatment, hydrolysis, and fermentation. In: Mondal P, Daiai AK, editors. Sustainable utilization of natural resources. Boca Raton: CRC Press; 2017b. p. 145–86.  https://doi.org/10.1201/9781315153292-7.Google Scholar
  105. Zabed H, Sahu JN, Suely A, Boyce AN, Faruq G. Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sustain Energ Rev. 2017c;71:475–501.  https://doi.org/10.1016/j.rser.2016.12.076.Google Scholar
  106. Zamalloa C, Vulsteke E, Albrecht J, Verstraete W. The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Technol. 2011;102(2):1149–58.PubMedGoogle Scholar
  107. Zamalloa C, De Vrieze J, Boon N, Verstraete W. Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor. Appl Microbiol Biotechnol. 2012;93(2):859–69.PubMedGoogle Scholar
  108. Ziganshin AM, Liebetrau J, Pröter J, Kleinsteuber S. Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials. Appl Microbiol Biotechnol. 2013;97(11):5161–74.PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Hossain M. Zabed
    • 1
  • Xianghui Qi
    • 1
    Email author
  • Junhua Yun
    • 1
  • Huanhuan Zhang
    • 1
  1. 1.School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations