Advertisement

Recent Trends in Microalgae Research for Sustainable Energy Production and Biorefinery Applications

  • Naim Rashid
  • Bongsoo Lee
  • Yong-Keun Chang
Chapter

Abstract

Microalgae are convincing biomaterials furnished with tremendous potential of performing environmental services and energy recovery to promote carbon neutral bio-economy. They have the ability to fix atmospheric CO2, water reclamation, bioremediation, and production of biomolecules, which offer distinguished features for biorefinery applications. However, several technical challenges in microalgae bioprocesses impede their application at large scale. The most notable challenges include low bioconversion efficiency and biomass productivity, susceptibility to harmful microorganisms, high-energy input in the form of light and nutrient supply, and high cost accounted for biomass harvest. In the framework of microalgae-based sustainable bio-economy, technology integration turns out to be the only viable solution. The integration of microalgal technology with other related field would unveil their meritorious attributes and would offset the cost of biomass processing. The focus of this chapter is to identify the recent environmental technologies which can be integrated with microalgae biorefinery to drive the objectives of resource-efficient bio-economy. The prospects of these technologies are presented to realize their future potential and sustainability outlook.

Keywords

Microalgae Biorefinery Sustainability Technology integration Coculture Extremophile Value-added bioproducts 

References

  1. Alam MA, Wan C, Guo SL, Zhao XQ, Huang ZY, Yang YL, Chang JS, Bai FW. Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7. J Biosci Bioeng. 2014;118(1):29–33.PubMedCrossRefGoogle Scholar
  2. Alam MA, Vandamme D, Chun W, Zhao X, Foubert I, Wang Z, Muylaert K, Yuan Z. Bioflocculation as an innovative harvesting strategy for microalgae. Rev Environ Sci Biotechnol. 2016;15(4):573–83.Google Scholar
  3. Amavizca E, Bashan Y, Ryu CM, Farag MA, Bebout BM, de Bashan LE. Enhanced performance of the microalga Chlorella sorokiniana remotely induced by the plant growth-promoting bacteria Azospirillum brasilense and Bacillus pumilus. Sci Rep. 2017a;7:41310.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Amavizca E, Bashan Y, Ryu C-M, Farag MA, Bebout BM, de Bashan LE. Enhanced performance of the microalga Chlorella sorokiniana remotely induced by the plant growth-promoting bacteria Azospirillum brasilense and Bacillus pumilus. Enhanced performance of the microalga Chlorella sorokiniana remotely induced by the plant growth-promoting bacteria Azospirillum brasilense and Bacillus pumilus. Sci Rep. 2017b;7:41310.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Benemann JR, Iian W, Tryg L. Autotrophic microalgae biomass production: from niche markets to commodities. Ind Biotechnol. 2018;14(1):3–10.CrossRefGoogle Scholar
  6. Beuckels A. Influence of organic matter on flocculation of Chlorella vulgaris by calcium phosphate precipitation. Influence of organic matter on flocculation of Chlorella vulgaris by calcium phosphate precipitation. Biomass Bioenergy. 2013;54:107–14.CrossRefGoogle Scholar
  7. Chen H, Qiu T, Rong J, He C, Wang Q. Microalgal biofuel revisited: an informatics-based analysis of developments to date and future prospects. Appl Energy. 2015;155:585–98.CrossRefGoogle Scholar
  8. Chen Y, Xu C, Vaidyanathan S. Microalgae: a robust “green bio-bridge” between energy and environment. Crit Rev Biotechnol. 2018;38(3):351–68.PubMedCrossRefGoogle Scholar
  9. Chwenk D, Nohynek L, Rischer H. Algae bacteria association inferred by 16S rDNA similarity in established microalgae cultures. MicrobiologyOpen. 2014;3:356–68.CrossRefGoogle Scholar
  10. Cui Y, Rashid N, Hu N, Rehman MSU, Han J-I. Electricity generation and microalgae cultivation in microbial fuel cell using microalgae-enriched anode and bio-cathode. Energy Convers Manag. 2014;79:674–80.CrossRefGoogle Scholar
  11. Deconinck N, Muylaert K, Ivens W, Vandamme D. Innovative harvesting processes for microalgae biomass production: a perspective from patent literature. Algal Res. 2018;31:469–77.CrossRefGoogle Scholar
  12. Demuez M, González-Fernández C, Ballesteros M. Algicidal microorganisms and secreted algicides: new tools to induce microalgal cell disruption. Biotechnol Adv. 2015;33(8):1615–25.PubMedCrossRefGoogle Scholar
  13. Dhillon RS, von Wuehlisch G. Mitigation of global warming through renewable biomass. Biomass Bioenergy. 2013;48:75–89.CrossRefGoogle Scholar
  14. Domozych DS, Kort S, Benton S, Yu T. The extracellular polymeric substance of the green alga Penium margaritaceum and its role in biofilm formation. Biofilms. 2005;2(2):129–44.CrossRefGoogle Scholar
  15. Farooq W, Lee Y-C, Han J-I, Darpito CH, Choi M, Yang J-W. Efficient microalgae harvesting by organo-building blocks of nanoclays. Green Chem. 2013;15(3):749–55.CrossRefGoogle Scholar
  16. Fouchard S, Hemscheimer A, Caruana A, Pruvost J, Legrand J, Happe T. Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chlamydomonas reinhardtii cells. Appl Environ Microbiol. 2005;71(10):6199–205.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Gouveia L, Oliveira AC, Congestri R, Bruno L, Soares AT, Menezes RS, Filho NRA, Tzovenis I. Microalgae-based biofuels and bioproducts. In: Muñoz R, editor. Woodhead Publishing Elsevier; 2017. p. 235–58.Google Scholar
  18. Graverholt OS, Eriksen NT. Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin. Appl Microbiol Biotechnol. 2007;77(1):69–75.PubMedCrossRefGoogle Scholar
  19. Graziani G, Schiavo S, Nicolai M, Buono S, Fogliano V, Pinto G, Pollio A. Microalgae as human food: chemical and nutritional characteristics of the thermo-acidophilic microalga Galdieria sulphuraria. Food Funct. 2013:144–52.PubMedCrossRefGoogle Scholar
  20. Lam TP, Lee T-M, Chen C-Y, Chang J-S. Strategies to control biological contaminants during microalgal cultivation in open ponds. Bioresour Technol. 2018;252:180–7.PubMedCrossRefGoogle Scholar
  21. Lee H, Nam K, Yang J-W, Han J-I, Chang Y. Synergistic interaction between metal ions in the sea salts and the extracellular polymeric substances for efficient microalgal harvesting. Algal Res. 2016;14:79–82.CrossRefGoogle Scholar
  22. Li T, Zheng Y, Yu L, Chen S. Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass Bioenergy. 2014;66:204–13.CrossRefGoogle Scholar
  23. Laurens LML. State of technology review – algae bioenergy an IEA bioenergy inter-task strategic project. Task 39 January 2017.Google Scholar
  24. Manheim D, Nelson Y. Settling and bioflocculation of two species of algae used in wastewater treatment and algae biomass production. Environ Prog Sustain Energy. 2013;32(4):946–54.CrossRefGoogle Scholar
  25. Manirafasha E, Ndikubwimana T, Zeng X, Lu Y, Jing K. Phycobiliprotein: potential microalgae derived pharmaceutical and biological reagent. Biochem Eng J. 2016;109:282–96.CrossRefGoogle Scholar
  26. Moon M, Mishra SK, Kim CW, Suh WI, Park MS, Yang J-W. Isolation and characterization of thermostable phycocyanin from Galdieria sulphuraria. Korean J Chem Eng. 2014;31(3):490–5.CrossRefGoogle Scholar
  27. Rashid N, Park W-K, Selvaratnam T. Binary culture of microalgae as an integrated approach for enhanced biomass and metabolites productivity, wastewater treatment, and bioflocculation. Chemosphere. 2018;194:67–75.PubMedCrossRefGoogle Scholar
  28. Sakurai T, Aoki M, Ju X, Ueda T, Nakamura Y, Fujiwara S, Umemura T, Tsuzuki M, Minoda A. Profiling of lipid and glycogen accumulations under different growth conditions in the sulfothermophilic red alga Galdieria sulphuraria. Bioresour Technol. 2016;200:861–6.PubMedCrossRefGoogle Scholar
  29. Schmidt RA, Wiebe MG, Eriksen NT. Heterotrophic high cell-density fed-batch cultures of the phycocyanin-producing red alga Galdieria sulphuraria. Biotechnol Bioeng. 2005;90(1):77–84.PubMedCrossRefGoogle Scholar
  30. Sharma A, Arya SK. Hydrogen from algal biomass: a review of production process. Biotechnol Rep. 2017;15:63–9.CrossRefGoogle Scholar
  31. Shuba ES, Kifle D. Microalgae to biofuels: ‘promising’ alternative and renewable energy, review. Renew Sust Energ Rev. 2018;81:743–55.CrossRefGoogle Scholar
  32. Singh A, Olsen SI. A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy. 2011;88(10):3548–55.CrossRefGoogle Scholar
  33. Ummalyma SB, Gnansounou E, Sukumaran RK, Sindhu R, Pandey A, Sahoo D. Bioflocculation: an alternative strategy for harvesting of microalgae – an overview. Bioresour Technol. 2017;242(Supplement C):227–35.PubMedCrossRefGoogle Scholar
  34. Vaneeckhaute C, Lebuf V, Michels E, Belia E, Vanrolleghem PA, Tack FMG, Meers E. Nutrient recovery from digestate: systematic technology review and product classification. Waste Biomass Valoriz. 2017;8(1):21–40.CrossRefGoogle Scholar
  35. Velea S, Oancea F, Fischer F. In: Muñoz R, editor. Microalgae-based biofuels and bioproducts: Woodhead Publishing ELSEVIER; 2017. p. 45–65.Google Scholar
  36. Wan M, Wang Z, Zhang Z, Wang J, Li S, Yu A, Li Y. A novel paradigm for the high-efficient production of phycocyanin from Galdieria sulphuraria. Bioresour Technol. 2016;218:272–8.PubMedCrossRefGoogle Scholar
  37. Xia A, Murphy JD. Microalgal cultivation in treating liquid digestate from biogas systems. Trends Biotechnol. 2016;34(4):264–75.PubMedCrossRefGoogle Scholar
  38. Yoo C, Choi GG, Kim SC, Oh HM. Ettlia sp. YC001 showing high growth rate and lipid content under high CO2. Bioresource Technol. 2013;127:482–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Naim Rashid
    • 1
    • 2
  • Bongsoo Lee
    • 2
  • Yong-Keun Chang
    • 2
  1. 1.Department of Chemical EngineeringCOMSATS University IslamabadLahorePakistan
  2. 2.Advanced Biomass R&D CenterDaejeonRepublic of Korea

Personalised recommendations