Advertisement

Polymers in Biosensors

  • Jia Jia Long
  • Abdel Mohsen Benoudjit
  • Farrah Aida Arris
  • Fathilah Ali
  • Wan Wardatul Amani Wan SalimEmail author
Chapter

Abstract

Polymers can be conductive or nonconductive, natural or synthetic, and have been widely used in the development of biosensors; polymers can be processed at a large scale at a relatively low cost. Poly (3, 4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), PANI, and PPy are widely used in fabricating biosensors owing to their intrinsic conductive property. Although conductivity is crucial in developing biosensors, a large number of nonconductive polymers such as chitin, chitosan, gelatin, dextran, cellulose, and polystyrene also attract interest for their function as support matrices for the immobilization of biomolecules. The non-conductive polymers can be classified into two categories: natural and synthetic. This chapter focuses on the potential use of polymer composites in biosensors.

Keywords

Biosensors Block copolymers Composite Conductive polymers Non-conductive polymers Natural polymers Synthetic polymers 

References

  1. Altikatoglu M, Basaran Y, Arioz C, Ogan A, Kuzu H (2010) Glucose oxidase-dextran conjugates with enhanced stabilities against temperature and pH. Appl Biochem Biotechnol 160(8):2187–2197PubMedCrossRefGoogle Scholar
  2. Auriemma F, De Rosa C (2011) Nanotechnological applications of block copolymers in biomedicine. Trop J Pharm Res 10(1):1–2Google Scholar
  3. Chawla S, Rawal R, Pundir CS (2011) Fabrication of polyphenol biosensor based on laccase immobilized on copper nanoparticles/chitosan/multiwalled carbon nanotubes/polyaniline-modified gold electrode. J Biotechnol 156(1):39–45PubMedCrossRefGoogle Scholar
  4. Choi BG, Im J, Kim HS, Park HS (2011) Flow-injection amperometric glucose biosensors based on graphene/Nafion hybrid electrodes. Electrochim Acta 56(27):9721–9726CrossRefGoogle Scholar
  5. Cui L, Xu M, Zhu J, Ai S (2011) A novel hydrogen peroxide biosensor based on the specific binding of horseradish peroxidase with polymeric thiophene-3-boronic acid monolayer in hydrophilic room temperature ionic liquid. Synth Met 161:1686–1690CrossRefGoogle Scholar
  6. De Wael K, Verstraete A, Van Vlierberghe S, Dejonghe W, Dubruel P, Adriaens A (2011) The electrochemistry of a gelatin modified gold electrode. Int J Electrochem Sci 6:1810–1819Google Scholar
  7. De Wael K, De Belder S, Pilehvar S, Van Steenberge G, Herrebout W, Heering HA (2012) Enzyme-gelatin electrochemical biosensors: Scaling down. Biosensors 2(1):101–113PubMedPubMedCentralCrossRefGoogle Scholar
  8. Diaconu M, Litescu SC, Radu GL (2010) Laccase–MWCNT–chitosan biosensor—a new tool for total polyphenolic content evaluation from in vitro cultivated plants. Sensors Actuators B Chem 145(2):800–806CrossRefGoogle Scholar
  9. Ding F, Deng H, Du Y, Shi X, Wang Q (2014) Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale 6(16):9477–9493PubMedCrossRefGoogle Scholar
  10. Grieshaber D, MacKenzie R, Voeroes J, Reimhult E (2008) Electrochemical biosensors-sensor principles and architectures. Sensors 8(3):1400–1458PubMedCrossRefGoogle Scholar
  11. Huang J (2006) Syntheses and applications of conducting. Pure Appl Chem 78:15–27CrossRefGoogle Scholar
  12. Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Graphene-based materials: Synthesis, characterization, properties, and applications. Small 7(14):1876–1902PubMedCrossRefGoogle Scholar
  13. Kaçar C, Dalkiran B, Erden PE, Kiliç E (2014) An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode. Appl Surf Sci 311:139–146CrossRefGoogle Scholar
  14. Kim JH, Mun S, Ko HU, Yun GY, Kim J (2014) Disposable chemical sensors and biosensors made on cellulose paper. Nanotechnology 25(9):092001PubMedCrossRefGoogle Scholar
  15. Ku KH, Shin JM, Kim MP, Lee CH, Seo MK, Yi GR, Kim BJ (2014) Size-controlled nanoparticle-guided assembly of block copolymers for convex lens-shaped particles. J Am Chem Soc 136(28):9982–9989PubMedCrossRefGoogle Scholar
  16. Li D, He Q, Li J (2009) Smart core/shell nanocomposites: intelligent polymers modified gold nanoparticles. Adv Colloid Interf Sci 149(1):28–38CrossRefGoogle Scholar
  17. Li J, Mei H, Zheng W, Pan P, Sun XJ, Li F, Guo F, Zhou HM, Ma JY, Xu XX, Zheng YF (2014) A novel hydrogen peroxide biosensor based on hemoglobin-collagen-CNTs composite nanofibers. Colloids Surf B Biointerfaces 118:77–82PubMedCrossRefGoogle Scholar
  18. Lin T, Li CL, Ho RM, Ho JC (2010) Association strength of metal ions with poly (4-vinylpyridine) in inorganic/poly (4-vinylpyridine)-b-poly (ε-caprolactone) hybrids. Macromolecules 43(7):3383–3391CrossRefGoogle Scholar
  19. Luo L, Li Q, Xu Y, Ding Y, Wang X, Deng D, Xu Y (2010) Amperometric glucose biosensor based on NiFe2O4 nanoparticles and chitosan. Sensors Actuators B Chem 145(1):293–298CrossRefGoogle Scholar
  20. Mahadeva SK, Kim J (2013) Porous tin-oxide-coated regenerated cellulose as disposable and low-cost alternative transducer for urea detection. IEEE Sens J 13(6):2223–2228CrossRefGoogle Scholar
  21. Mahadeva SK, Ko HU, Kim J (2013) Investigation of cellulose and tin oxide hybrid composite as a disposable pH sensor. Int J Res Phys Chem Chem Phys 227(4):419–428Google Scholar
  22. Manesh K, Santhosh P, Gopalan A, Lee K (2008) Electrocatalytic oxidation of NADH at gold nanoparticles loaded. Talanta 75:1307–1314PubMedCrossRefGoogle Scholar
  23. Naghib SM, Rabiee M, Omidinia E, Khoshkenara P, Zeini D (2012) Biofunctionalization of dextran-based polymeric film surface through enzyme immobilization for phenylalanine determination. Int J Electrochem Sci 7(1):120–135Google Scholar
  24. Nasirizadeh N, Hajijosseini S, Shekari Z, Ghaani M (2015) A novel electrochemical biosensor based on a modified gold electrode for hydrogen peroxide determination in different beverage samples. Food Anal Methods 8(6):1546–1555CrossRefGoogle Scholar
  25. Nia PM, Meng WP, Lorestani F, Mahmoudian MR, Alias Y (2015) Electrodeposition of copper oxide/polypyrrole/reduced graphene oxide as a nonenzymatic glucose biosensor. Sensors Actuators B Chem 209:100–108CrossRefGoogle Scholar
  26. Pham T, Choi B, Lim K, Jeong Y (2011) A simple approach for immobilization of gold nanoparticles on graphene oxide sheets by covalent bonding. Appl Surf Sci 257:3350–3357CrossRefGoogle Scholar
  27. Richard B, Nigel JC, Sarah HC (2014) Review Conductive polymers: Towards a smart biomaterial for tissue. Acta Biomater 10:2341–2353CrossRefGoogle Scholar
  28. Saei A, Najafi-Marandi P, Abhari A, de la Guardia M, Dolatabadi A (2013) Electrochemical biosensors for glucose based on metal nanoparticles. TrAC Trends Anal Chem 42:216–227CrossRefGoogle Scholar
  29. Sarkar B, Alexandridis P (2012) Self-assembled block copolymer-nanoparticle hybrids: Interplay between enthalpy and entropy. Langmuir 28(45):15975–15986PubMedCrossRefGoogle Scholar
  30. Satvekar RK, Rohiwal SS, Raut AV, Karande VA, Tiwale BM, Pawar SH (2014) A silica-dextran nanocomposite as a novel matrix for immobilization of horseradish peroxidase, and its application to sensing hydrogen peroxide. Microchim Acta 181(1–2):71–77CrossRefGoogle Scholar
  31. Shi J, C Claussen J, S McLamore E, ul Haque A, Jaroch D, R Diggs A, D Porterfield M (2011) A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors. Nanotechnology 22:355502PubMedCrossRefGoogle Scholar
  32. Singh A, Sinsinbar G, Choudhary M, Kumar V, Pasricha R, Verma HN, Arora K (2013) Graphene oxide-chitosan nanocomposite based electrochemical DNA biosensor for detection of typhoid. Sensors Actuators B Chem 185:675–684CrossRefGoogle Scholar
  33. Sophia J, Muralidharan G (2015) Gold nanoparticles for sensitive detection of hydrogen peroxide: a simple non-enzymatic approach. J Appl Electrochem 45:1–9CrossRefGoogle Scholar
  34. Tabrizi MA, Varkani JN (2014) Green synthesis of reduced graphene oxide decorated with gold nanoparticles and its glucose sensing application. Sensors Actuators B Chem 202:475–482CrossRefGoogle Scholar
  35. TermehYousefi A, Bagheri S, Kadri NA, Mahmood MR, Ikeda S (2015) Constant glucose biosensor based on vertically aligned carbon nanotube composites. Int J Electrochem Sci 10:4183–4192Google Scholar
  36. Tseng YC, Darling SB (2010) Block copolymer nanostructures for technology. Polymers 2(4):470–489CrossRefGoogle Scholar
  37. Unnikrishnan B, Palanisamy S, Chen SM (2013) A simple electrochemical approach to fabricate a glucose biosensor based on graphene–glucose oxidase biocomposite. Biosens Bioelectron 39:70–75PubMedCrossRefGoogle Scholar
  38. Wang X, & Uchiyama S (2013) Polymers for biosensors construction. In State of the art in biosensorsgeneral aspects. InTech.Google Scholar
  39. Wang L, Gao X, Jin L, Wu Q, Chen Z, Lin X (2013) Amperometric glucose biosensor based on silver nanowires and glucose oxidase. Sensors Actuators B Chem 176:9–14CrossRefGoogle Scholar
  40. Wang Y, Li T, Zhang W, Huang Y (2014) A hydrogen peroxide biosensor with high stability based on gelatin-multiwalled carbon nanotubes modified glassy carbon electrode. J Solid State Electrochem 18(7):1981–1987CrossRefGoogle Scholar
  41. Xu J, Peng R, Ran Q, Xian Y, Tian Y, Jin L (2010) A highly soluble poly (3, 4-ethylenedioxythiophene)-poly (styrene sulfonic acid)/Au nanocomposite for horseradish peroxidase immobilization and biosensing. Talanta 82(4):1511–1515PubMedCrossRefGoogle Scholar
  42. Xue K, Zhou S, Shi H, Feng X, Xin H, Song W (2014) A novel amperometric glucose biosensor based on ternary gold nanoparticles/polypyrrole/reduced graphene oxide nanocomposite. Sensors Actuators B Chem 203:412–416CrossRefGoogle Scholar
  43. Yang J, Gunasekaran S (2012) Electrochemically reduced graphene oxide sheets for use in high performance supercapacitors. Carbon 51:36–44CrossRefGoogle Scholar
  44. Yang X, Bai J, Wang Y, Jiang X, He X (2012a) Hydrogen peroxide and glucose biosensor based on silver nanowires synthesized by polyol process. Analyst 137(18):4362–4367PubMedCrossRefGoogle Scholar
  45. Yang X, Chen H, Li J, Xu M (2012b) Chemical methods for graphene synthesis. In: Xu Z (ed) Graphene: properties, synthesis and applications. Nova Science Publishers, Inc, New York, pp 101–124Google Scholar
  46. Yao Y, Wen Y, Zhang L, Xu i, Wang Z, Duan X (2013) A stable sandwich-type hydrogen peroxide sensor based on immobilizing horseradish peroxidase to a silver nanoparticle monolayer supported by PEDOT: PSS. Int J Electrochem Sci 8(7):9348–9359Google Scholar
  47. Yuqing M, Jianrong C, Xiaohua W (2004) Using electropolymerized non-conducting polymers to develop enzyme amperometric biosensors. Trends Biotechnol 22(5):227–231PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jia Jia Long
    • 1
  • Abdel Mohsen Benoudjit
    • 1
  • Farrah Aida Arris
    • 1
  • Fathilah Ali
    • 1
  • Wan Wardatul Amani Wan Salim
    • 1
    Email author
  1. 1.Department of Biotechnology Engineering, Faculty of EngineeringInternational Islamic University MalaysiaKuala LumpurMalaysia

Personalised recommendations