Advertisement

Characterization of Electrochemical Transducers for Biosensor Applications

  • Farrah Aida Arris
  • Abdel Mohsen Benoudjit
  • Fahmi Sanober
  • Wan Wardatul Amani Wan SalimEmail author
Chapter

Abstract

Biosensors are devices that detect and report the presence or quantity of a particular analyte. Among the biosensor components, a physicochemical transducer measures physical and chemical changes from analyte-recognition interactions where products, by-products, intermediates, or physical changes are converted into a measurable signal. The character of the transducer determines the performance of a biosensor; hence the characterization of the transduction is crucial in the design of a biosensor. This chapter describes electrochemical characterization of the transducer layer of a biosensor via cyclic voltammetry.

Keywords

Biosensors Chronoamperometry Cyclic voltammetry Effective surface area Electrochemical transducer Randles-Sevcik 

References

  1. An YK, Kim MK, Sohn H (2014) Piezoelectric transducers for assessing and monitoring civil infrastructures. Sensor technologies for civil infrastructures: sensing hardware and data collection methods for performance assessment, pp 1, 86CrossRefGoogle Scholar
  2. Baghayeri M, Zare EN, Hasanzadeh R (2014) Facile synthesis of PSMA-g-3ABA/MWCNTs nanocomposite as a substrate for hemoglobin immobilization: application to catalysis of H2O2. Mater Sci Eng C 39:213–220CrossRefGoogle Scholar
  3. Bartlett PN (2008) Bioelectrochemistry: fundamentals, experimental techniques, and applications. Wiley, ChichesterCrossRefGoogle Scholar
  4. Berrettoni C, Berneschi S, Bernini R, Giannetti A, Grimaldi IA, Persichetti G et al (2014) Optical monitoring of therapeutic drugs with a novel fluorescence-based POCT device. Proc Eng 87:392–395CrossRefGoogle Scholar
  5. Du J, Yue R, Ren F, Yao Z, Jiang F, Yang P, Du Y (2013) Simultaneous determination of uric acid and dopamine using a carbon fiber electrode modified by layer-by-layer assembly of graphene and gold nanoparticles. Gold Bull 46:137–144CrossRefGoogle Scholar
  6. Gao K, Shao Z, Wu X, Wang X, Li J, Zhang Y, Wang W, Wang F (2013) Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper. Carbohydr Polym 97:243–251PubMedCrossRefGoogle Scholar
  7. Han YD, Park YM, Chun HJ, Yoon HC (2015) A low-cost optical transducer is utilizing common electronics components for the gold nanoparticle-based immunosensing application. Sensors Actuators B Chem 220:233–242CrossRefGoogle Scholar
  8. Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14):1876–1902PubMedCrossRefGoogle Scholar
  9. Li X, Zhong A, Wei S, Luo X, Liang Y, Zhu Q (2015) Polyelectrolyte functionalized gold nanoparticles-reduced graphene oxide nanohybrid for electrochemical determination of aminophenol isomers. Electrochim Acta 164:203–210CrossRefGoogle Scholar
  10. Luong JH, Male KB, Glennon JD (2008) Biosensor technology: technology push versus market pull. Biotechnol Adv 26(5):492–500PubMedCrossRefGoogle Scholar
  11. Nia PM, Meng WP, Lorestani F, Mahmoudian MR, Alias Y (2015) Electrodeposition of copper oxide/polypyrrole/reduced graphene oxide as a nonenzymatic glucose biosensor. Sensors Actuators B Chem 209:100–108CrossRefGoogle Scholar
  12. Palanisamy S, Vilian ATE, Chen S (2012) Direct electrochemistry of glucose oxidase at reduced graphene oxide/zinc oxide composite modified electrode for glucose sensor. Int J Electrochem Sci 7:2153–2163Google Scholar
  13. Park W, Hu J, Jauregui LA, Ruan X, Chen YP (2014) Electrical and thermal conductivities of reduced graphene oxide/polystyrene composites. Appl Phys Lett 104:113101CrossRefGoogle Scholar
  14. Perumal V, Hashim U (2014) Advances in biosensors: principle, architecture and applications. J Appl Biomed 12(1):1–15CrossRefGoogle Scholar
  15. Royal Society of Chemistry (2015). Composites. Retrieved from www.rsc.org/Education/Teachers/Resources/Inspirational/resources/4.3.1.pdf
  16. Serhane R, Abdelli-Messaci S, Lafane S, Khales H, Aouimeur W, Hassein-Bey A, Boutkedjirt T (2014) Pulsed laser deposition of piezoelectric ZnO thin films for bulk acoustic wave devices. Appl Surf Sci 288:572–578CrossRefGoogle Scholar
  17. Shi A, Wang J, Han X, Fang X, Zhang Y (2014) A sensitive electrochemical DNA biosensors based on gold nanomaterial and graphene amplified signal. Sens Actuator B Chem 200:206–212CrossRefGoogle Scholar
  18. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271CrossRefGoogle Scholar
  19. Tabrizi MA, Varkani JN (2014) Green synthesis of reduced graphene oxide decorated with gold nanoparticles and its glucose sensing application. Sens Actuator B Chem 202:475–482CrossRefGoogle Scholar
  20. Tian K, Prestgard M, Tiwari A (2014) A review of recent advances in nonenzymatic glucose sensors. Mater Sci Eng C 41:100–118CrossRefGoogle Scholar
  21. Turner AP, Karube I, Wilson GS (1990) Biosensors: fundamentals and applications. Oxford University Press, OxfordGoogle Scholar
  22. Vereshchagina E, Tiggelaar RM, Sanders RGP, Wolters RAM, Gardeniers JGE (2015) Low power micro-calorimetric sensors for analysis of gaseous samples. Sens Actuators B Chem 206:772–787CrossRefGoogle Scholar
  23. Wan X, Zhao J, Wang M (2010) A novel design of the sensor head for avoiding the influence of the reflection phase shift in optical current transducer. Opt Lasers Eng 48(3):325–328CrossRefGoogle Scholar
  24. Wang C, Ye F, Wu H, Qian Y (2013a) Depositing Au nanoparticles onto graphene sheets for simultaneous electrochemical detection ascorbic acid, dopamine and uric acid. Int J Electrochem Sci 8:2440–2448Google Scholar
  25. Wang MY, Shen T, Wang M, Zhang D, Chen J (2013b) One-pot green synthesis of Ag nanoparticles-decorated reduced graphene oxide for efficient nonenzymatic H2O2 biosensor. Mater Lett 107:311–314CrossRefGoogle Scholar
  26. Yakovenko VM (2012) Novel method for photovoltaic energy conversion using surface acoustic waves in piezoelectric semiconductors. Phys B Condens Matter 407(11):1969–1972CrossRefGoogle Scholar
  27. Yang J, Gunasekaran S (2012) Electrochemically reduced graphene oxide sheets for use in high performance supercapacitors. Carbon 51:36–44CrossRefGoogle Scholar
  28. Yang J, Deng S, Lei J, Ju H, Gunasekaran S (2011) Electrochemical synthesis of reduced graphene sheet-AuPd alloy nanoparticle composites for enzymatic biosensing. Biosens Bioelectron 29:159–166PubMedCrossRefGoogle Scholar
  29. Zhang Y, Wang Y, Jia J, Wang J (2012) Nonenzymatic glucose sensor based on graphene oxide and electrospun NiO nanofibers. Sens Actuator B Chem 171–172:580–587CrossRefGoogle Scholar
  30. Zheng Q, Cheng J, Liu X, Bai H, Jiang J (2011) Palladium nanoparticle/chitosan-grafted graphene nanocomposites for construction of a glucose biosensor. Biosens Bioelectron 26:3456–3463CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Farrah Aida Arris
    • 1
  • Abdel Mohsen Benoudjit
    • 1
  • Fahmi Sanober
    • 1
  • Wan Wardatul Amani Wan Salim
    • 1
    Email author
  1. 1.Department of Biotechnology Engineering, Faculty of EngineeringInternational Islamic University MalaysiaKuala LumpurMalaysia

Personalised recommendations