Physiological, Biochemical Changes, and Phytotoxicity Remediation in Agricultural Plant Species Cultivated in Soils Contaminated with Copper and Zinc

  • Paulo Ademar Avelar Ferreira
  • Cledimar Rogerio Lourenzi
  • Tales Tiecher
  • Tadeu Luis Tiecher
  • Felipe Klein Ricachenevsky
  • Gustavo Brunetto
  • Admir José Giachini
  • Cláudio Roberto Fonsêca Sousa Soares


Most heavy metals are found naturally in the earth’s crust at concentrations that do not cause toxicity to living beings. However, since the industrial revolution, heavy metal pollution has increased substantially due to increasing mining activities, industrial effluent disposal, use of pesticides and fertilizers, use of fossil fuels, among others. Heavy metals undergo various precipitation/dissolution, adsorption/desorption and oxidation reactions that govern the partitioning of elements in the solid phase or soil solution, influencing bioavailability for living beings. The availability of metals in the soil solution depends on factors such as pH, organic matter, metals and anions concentration, soil texture, presence of correctives and fertilizers, moisture, redox potential and the presence of mycorrhizae. In the soil solution, heavy metals absorption is mediated by specialized transporters coupled to carrier proteins present in the plasma membrane of the root cells, being translocated and accumulated in their organs, causing physiological changes that culminate with phytotoxicity. Despite this, plants present several mechanisms to avoid the absorption of toxic elements and enter metabolic mechanisms of tolerance. The response of plants to heavy metal toxicity involves structural, physiological and biochemical changes depending on the type and concentration of the element and the time of exposure. When considering physiological actions, there are a number of factors to consider. Among them mechanisms of absorption, transport and accumulation of elements in plant tissues, the primary mechanisms of toxicity at the molecular, cellular and sub-cellular level, secondary mechanisms of interference with functional processes of plants, and the mechanisms of homeostatic response that, in some cases, lead to mechanisms of tolerance against heavy metals. In addition, microbial root symbioses such as arbuscular mycorrhizal fungi (AMF) and rhizobia can attenuate the phytotoxicity of excess metals in the soil. Thus, in this chapter, with no intention of exhausting the topics discussed, general aspects of the behavior of heavy metals in the soil, the factors that affect the absorption and transport of those elements in the plants, and the mechanisms of tolerance involved that can contribute to the remediation of contaminated soils will be discussed.


Toxic metals Phytoremediation Metal chelation Soil pollution Plant stress 


  1. Abdel-Ghany SE, Müller-Moulé P, Niyogi KK, Pilon M, Shikanai T (2005) Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant Cell 17:1233–1251PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Chem Biol 283:15932–15945CrossRefGoogle Scholar
  3. Accioly AMA, Soares CRFS, Siqueira JO (2009) Silicato de cálcio como amenizante da toxidez de metais pesados em mudas de eucalipto. Pesqu Agrop Bras Pesq Agrop Bras 44:180–188CrossRefGoogle Scholar
  4. Adams JP, Adeli A, Hsu CY, Harkess RL, Page GP, de Pamphilis CW, Schultz EB, Yuceer C (2011) Poplar maintains zinc homeostasis with heavy metal genes HMA4 and PCS1. J Exp Bot 62:3737–3752PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33PubMedCrossRefPubMedCentralGoogle Scholar
  6. Aker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621CrossRefGoogle Scholar
  7. Alleoni LRF, Borba RP, Camargo OA (2005) Metais pesados: Da cosmogênese aos solos brasileiros. Tópicos Ciência Solo 4:1–42Google Scholar
  8. Alloway BJ (ed) (1995) Heavy metals in soils, 2nd edn. Springer, NetherlandsGoogle Scholar
  9. Alves PL, Magalhães ACN, Barja PR (2002) The phenomenon of photoinhibition of photosynthesis and its importance in reforestation. Bot Rev 68:193–208CrossRefGoogle Scholar
  10. Amaral Sobrinho NMB, Lã OR, Barra CM (2009) Química dos metais pesados no solo. Alleoni LRF, Melo VF Química e Mineralogia do solo, Sociedade Brasileira de Ciência do Solo, Viçosa 249–312Google Scholar
  11. Ambrosini VG, Voges JG, Canton L, Couto RR, Ferreira PAA, Comin JJ, de Melo GWB, Burnetto G, Soares CRFS (2015a) Effect of arbuscular mycorrhizal fungi on young vines in copper-contaminated soil. Braz J Microbiol 46:1045–1052PubMedPubMedCentralCrossRefGoogle Scholar
  12. Ambrosini VG, Rosa DJ, Prado JPC, Borghezan M, Melo GWB, Soares CRFS, Comin JJ, Simão DG, Brunetto G (2015b) Reduction of copper phytotoxicity by liming: a study of the root anatomy of young vines (Vitis labrusca L.). Plant Physiol Biochem 96:270–280PubMedCrossRefPubMedCentralGoogle Scholar
  13. Ando Y, Nagata S, Yanagisawa S, Yoneyama T (2013) Copper in xylem and phloem saps from rice (Oryza sativa): the effect of moderate copper concentrations in the growth medium on the accumulation of five essential metals and a speciation analysis of copper-containing compounds. Funct Plant Biol 40:89–100CrossRefGoogle Scholar
  14. Andrade SAL, Abreu CA, Abreu MF, Silveira APD (2003) Interacão de chumbo, da saturacão por bases do solo e de micorriza arbuscular no crescimento e nutricão mineral da soja. Rev Bras Ciênc Solo 27:945–954CrossRefGoogle Scholar
  15. Andrade SAL, Jorge RA, Silveira APD (2005) Cadmium effect on the association of jackbean (Canavalia ensiformis) and arbuscular mycorrhizal fungi. Sci Agric 62:389–394CrossRefGoogle Scholar
  16. Andrade SAL, Gratão PL, Azevedo RA, Silveira APD, Schiavinato MA, Mazzafera P (2010) Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environ Exp Bot 68:198–207CrossRefGoogle Scholar
  17. Andrés-Colás N, Sancenón V, Rodríguez-Navarro S, Mayo S, Thiele DJ, Ecker JR, Puig S, Peñarrubia L (2006) The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. Plant J 45:225–236PubMedCrossRefPubMedCentralGoogle Scholar
  18. Arduini I, Godbold DL, Onnis A (1995) Influence of copper on root growth and morphology of Pinus pinea L. and Pinus pinaster Ait. Seedlings. Tree Physiol 15:411–415PubMedCrossRefPubMedCentralGoogle Scholar
  19. Ayati M, Madsen HEL (2001) Crystallization of some heavy metal phosphates alone and in the presence of calcium ion. J Cryst Growth 208:579–591CrossRefGoogle Scholar
  20. Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bandara T, Herath I, Kumarathilaka P, Hseu ZY, Ok YS, Vithanage M (2017) Efficacy of woody biomass and biochar for alleviating heavymetal bioavailability in serpentine soil. Environ Geochem Health 39:391–401PubMedCrossRefPubMedCentralGoogle Scholar
  22. Barceló J, Poschenrieder C (1992) Respuestas de las plantas a la contaminación por metales pesados. Suelo Plant 2:345–361Google Scholar
  23. Barrow NJ (1999) The four laws of soil chemistry: the Leeper lecture 1998. Aust J Soil Res 37:787–830CrossRefGoogle Scholar
  24. Basso CJ, Ceretta CA, Flores EMM, Girotto E (2012) Teores totais de metais pesados no solo após aplicação de dejeto líquido de suínos. Ciênc Rural 42:653–659CrossRefGoogle Scholar
  25. Bergmann W (1992) Nutritional disorders of plants – development, visual and analytical diagnosis. Fischer, New YorkGoogle Scholar
  26. Bernal M, Roncel M, Ortega JM, Picorel R, Yruela I (2004) Efeito de cobre no citocromo b559 do fotossistema II sob condições fotoinibitórias. Physiol Plant 120:686–694PubMedCrossRefPubMedCentralGoogle Scholar
  27. Bernal M, Casero D, Singh V, Wilson GT, Grande A, Yang H, Dodani SC, Pellegrini M, Huijser P, Connolly EL, Merchant SS, Krämer U (2012) Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis. Plant Cell 24:738–671PubMedPubMedCentralCrossRefGoogle Scholar
  28. Bi YL, Wu FY, Wu YK (2005) Application of arbuscular mycorrhizal in ecological restoration of areas affected by coal mining in China. Acta Ecol Sin 25:2068–2073Google Scholar
  29. Blaby-Haas CE, Padilla-Benavides T, Stübe R, Argüello JM, Merchant SS (2014) Evolution of a plant-specific copper chaperone family for chloroplast copper homeostasis. Proc Natl Acad Sci U S A 111:E5480–E5487Google Scholar
  30. Bochicchio R, Sofo A, Terzano R, Gattullo CE, Amato M, Scopa A (2015) Root architecture and morphometric analysis of Arabidopsis thaliana grown in Cd/Cu/Zn-gradient agar dishes: a new screening technique for studying plant response to metals. Plant Physiol Biochem 91:20–27PubMedCrossRefPubMedCentralGoogle Scholar
  31. Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils – to mobilize or to immobilize? J Hazard Mater 266:141–166PubMedCrossRefPubMedCentralGoogle Scholar
  32. Bradl H (2004) Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interface Sci 277:1–18PubMedCrossRefPubMedCentralGoogle Scholar
  33. Briat JF, Lebrun M (1999) Plant responses to metal toxicity. C R Acad Sci 322:43–54CrossRefGoogle Scholar
  34. Brown SL, Angle JS, Chaney RL, Baker AJM (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi coerulescens grown in nutrient solution. Soil Sci Soc Am J 59:125–133CrossRefGoogle Scholar
  35. Brun LA, Maillet J, Hinsinger P, Pépin M (2001) Evaluation of copper availability to plants in copper-contaminated vineyard soils. Environ Pollut 111:293–302PubMedCrossRefPubMedCentralGoogle Scholar
  36. Brunetto G, Ferreira PAA, Melo GWB, Ceretta CA (2017) Heavy metals in vineyard sand orchard soils. Rev Bras Frutic 39:1–10CrossRefGoogle Scholar
  37. Brunetto G, Miotto A, Ceretta CA, Schmitt DE, Heinzen J, Moraes MP, Canton L, Tiecher TL, Comin JJ, Girotto E (2014) Mobility of copper and zinc fractions in fungicide-amended vineyard sandy soils. Arch Agron Soil Sci 60:609–624CrossRefGoogle Scholar
  38. Camargo OA, Alleoni LFF, Casagrande JC (2001) Reações dos micronutrientes e elementos tóxicos no solo. In: Ferreira ME, Cruz MCP, Raij BV, Abreu CA (eds) Micronutrientes e elementos tóxicos na agricultura. CNPq/Fapesp/Potafos, Jaboticabal, pp 89–124Google Scholar
  39. Cambrollé J, García JL, Figueroa ME, Cantos M (2015) Evaluating wild grapevine tolerance to copper toxicity. Chemosphere 120:171–178PubMedCrossRefPubMedCentralGoogle Scholar
  40. Cambrollé J, Mancilla-Leyton JM, Muñoz-Valles S, Figueroa-Luque E, Luque T, Figueroa ME (2013) Evaluation of zinc tolerance and accumulation potential of the coastal shrub Limoniastrum monopetalum (L.) Boiss. Environ Exp Bot 85:50–57CrossRefGoogle Scholar
  41. Cambrollé J, Mancilla-Leytón JM, Muñoz-Vallés S, Luque T, Figueroa ME (2012) Zinc tolerance and accumulation in the salt-marsh shrub Halimione portulacoides. Chemosphere 86:867–874PubMedCrossRefPubMedCentralGoogle Scholar
  42. Campostrini E (2001) Fluorescência da clorofila a: considerações teóricas e aplicações práticas. UFNF. In: Rio de janeiroGoogle Scholar
  43. Cao X, Ma LQ, Chen M, Singh SP, Harris WG (2002) Impacts of phosphate amendments on lead biogeochemistry at a contaminated site. Environ Sci Technol 36:5296–5304PubMedCrossRefPubMedCentralGoogle Scholar
  44. Cao RX, Ma LQ, Chen M, Singh SP, Harris WG (2003) Phosphate-induced metal immobilization in a contaminated site. Environ Pollut 122:19–28PubMedCrossRefPubMedCentralGoogle Scholar
  45. Catty P, Boutigny S, Miras R, Joyard J, Rolland N, Seigneurin-Berny D (2011) Biochemical characterization of AtHMA6/PAA1, a chloroplast envelope Cu (I)-ATPase. J Biol Chem 286:36188–36197PubMedPubMedCentralCrossRefGoogle Scholar
  46. Chaignon V, Sanchez-Neira I, Herrmann P, Jaillard B, Hinsinger P (2003) Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area. Environ Pollut 123:229–238PubMedCrossRefPubMedCentralGoogle Scholar
  47. Chang AC, Diaz JL (1994) Rational use of sewage sludge and other waste material in agriculture. In: Transactions: 15th World Congress of Soil Science, International Society of Soil Science: Mexican Society of Soil Science, Acapulco, MexicoGoogle Scholar
  48. Chao DY, Silva A, Baxter I, Huang YS, Nordborg M, Danku J, Lahner B, Yakubova E, Salt DE (2012) Genome-wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thaliana. PLoS Genet 8:e1002923. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Chen PY, Lee YI, Chen BC, Juang KW (2013) Effects of calcium on rhizotoxicity and the accumulation and translocation of copper by grapevines. Plant Physiol Biochem 73:375–382PubMedCrossRefPubMedCentralGoogle Scholar
  50. Cheng X, Baumgartner K (2006) Effects of mycorrhizal roots and extraradical hyphae on 15N uptake from vineyard cover crop litter and the soil microbial community. Soil Biol Biochem 38:2665–2675CrossRefGoogle Scholar
  51. Cherif J, Mediouni C, Ammar WB, Jemal F (2011) Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solanum lycopersicum). J Environ Sci 23:837–844CrossRefGoogle Scholar
  52. Christie P, Xiaolin L, Baodong C (2004) Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soil moderately polluted with zinc. Plant Soil 261:209–217CrossRefGoogle Scholar
  53. Ciscato M, Valcke R, van Loven K, Clijsters H, Navari-Izzo F (1997) Effects of in vivo copper treatment on the photosynthetic apparatus of two Triticum durum cultivars with different stress sensitivity. Physiol Plant 100:901–908CrossRefGoogle Scholar
  54. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719PubMedCrossRefPubMedCentralGoogle Scholar
  55. Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315PubMedCrossRefPubMedCentralGoogle Scholar
  56. COMISSÃO DE QUÍMICA E FERTILIDADE DO SOLO - CQFS-RS/SC (2004) Manual de adubação e calagem para os Estados do Rio Grande do Sul e de Santa Catarina. 10.ed. Porto Alegre, Sociedade Brasileira de Ciência do Solo/Núcleo Regional Sul/UFRGS, p 400Google Scholar
  57. Cornejo P, Pérez-Tienda J, Meier S, Valderas A, Borie F, Azcón-Aguilar C, Ferrol N (2013) Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-polluted environments. Soil Biol Biochem 57:925–928CrossRefGoogle Scholar
  58. Couto RR, Benedet L, Brunetto G, Comin JJ, Filho PB, Martins SR, Gatiboni LC, Radetski M, Valois CM, Ambrosini VG (2014) Accumulation of copper and zinc fractions in vineyard soil in the mid-western region of Santa Catarina, Brazil. Environ Earth Sci 1:6379–6386Google Scholar
  59. Croué JP, Benedetti MF, Violleau D, Leenher JA (2003) Characterization and copper binding of humic and nonhumic organic matter isolated from the South Platte River: evidence for the presence of nitrogenous binding site. Environ Sci Technol 37:328–336PubMedCrossRefPubMedCentralGoogle Scholar
  60. De Conti L, Ceretta CA, Ferreira PAA, Lourenzi CR, Girotto E, Lorensini F, Marquezan C, Achieta MG, Brunetto G (2016) Soil solution concentrations and chemical species of copper and zinc in a soil with a history of pig slurry application and plant cultivation. Agric Ecosyst Environ 216:374–386CrossRefGoogle Scholar
  61. De Gara L, Pinto MC, Tommasi F (2003) The antioxidant systems vis-a-vis reactive oxygen species during plant pathogen interaction. Plant Physiol Biochem 41:863–870CrossRefGoogle Scholar
  62. Degenhardt B, Gimmler H (2000) Cell wall adaptations to multiple environmental stresses in maize roots. J Exp Bot 51:595–603PubMedCrossRefPubMedCentralGoogle Scholar
  63. Del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes: production, scavenging, and role in cell signaling. Physiol Plant 141:330–335CrossRefGoogle Scholar
  64. Deng F, Yamaji N, Xia J, Ma JF (2013) A member of the heavy metal P-type ATPase OsHMA5 is involved in xylem loading of copper in rice. Plant Physiol 163:1353–1362PubMedPubMedCentralCrossRefGoogle Scholar
  65. Díaz G, Azcón-Aguilar C, Honrúbia M (1996) Influence of arbuscular mycorrhiza on heavy metal (Zn and Pb) uptake and growth of Lygedum spartum and Anthyllis cystoides. Plant Soil 180:241–249CrossRefGoogle Scholar
  66. Duffus JH (2002) Heavy metal - a meaningless term? Pure Appl Chem 74:793–807CrossRefGoogle Scholar
  67. Eckhardt U, Grimm B, Hörtensteiner S (2004) Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol 56:1–14PubMedCrossRefPubMedCentralGoogle Scholar
  68. Eissenstat DM (1992) Costs and benefits of constructing roots of small diameter. J Plant Nutr 15:763–782CrossRefGoogle Scholar
  69. Elliot HA, Dennemy CM (1982) Soil adsorption of cádmium from solutions containing organic ligands. J Environ Qual 11:658–663CrossRefGoogle Scholar
  70. Fernández-Calviño D, Nóvoa-Muñoz JC, Díaz-Raviña M, Arias-Estévez M (2009) Copper accumulation and fractionation in vineyard soils from temperate humid zone (NW Iberian Peninsula). Geoderma 153:119–129CrossRefGoogle Scholar
  71. Fernández-Calviño D, Pateiro-Moure M, Nóvoa-Muñoz JC, Garrido-Rodrigues B, Arias-Estévez M (2012) Zinc distribution and acid–base mobilisation in vineyard soils and sediments. Sci Total Environ 414:470–479PubMedCrossRefPubMedCentralGoogle Scholar
  72. Fernández-Calviño D, Soler-Rovira P, Polo A, Arias-Estévez M, Plaza C (2010) Influence of humified organic matter on copper behavior in acid polluted soils. Environ Pollut 158:3634–3641PubMedCrossRefPubMedCentralGoogle Scholar
  73. Ferreira PAA (2017) Atividade enzimática e fluorescência da clorofila a em Mucuna cinereum inoculada com Rhizophagus clarus e cultivada em solo com altos teores de Cu. (Artigo em Preparação)Google Scholar
  74. Ferreira PA, Brunetto G, Giachini AJ, Soares CRFS (2014) Heavy metal remediation. In: Gupta DK, Chatterjee S (eds) Heavy metal remediation transport and accumulation in plants. Nova Sciences Publishers, New York, pp 127–154Google Scholar
  75. Ferreira PAA, Ceretta CA, Soriani HH, Tiecher TL, Soares CRFS, Rossato LV, Nicoloso FT, Brunetto G, Paranhos JT, Cornejo P (2015) Rhizophagus clarus and phosphate alter the physiological responses of Crotalaria juncea cultivated in soil with a high Cu level. Appl Soil Ecol 91:37–47CrossRefGoogle Scholar
  76. Ferreira PAA, Silva EP, Armas RD, Lazzaretti BP, Melo GWB, Zalamena J, Soares CRFS (2016) Estratégias de amenização da fitotoxidez de metais pesados em solos de vinhedos. In: Melo GWB, Zalamena J, Brunetto G, Ceretta CA (eds) Calagem, adubação e contaminação em solos cultivados com videiras. Embrapa, Bento Gonçalves, pp 111–138Google Scholar
  77. Ferrol N, González-Guerrero M, Valderas A, Benabdellah K, Azcón-Aguilar C (2009) Survival strategies of arbuscular mycorrhizal fungi in Cu-polluted environments. Phytochem Rev 8:551–559CrossRefGoogle Scholar
  78. Filho MRR, Siqueira JO, Vangronsveld J, Soares CRFS, Curi N (2011) Inorganic materials as ameliorants for soil remediation of metal toxicity to wild mustard (Sinapis arvensis L.). Int J Phytoremediation 13:498–512CrossRefGoogle Scholar
  79. Flores-Vélez J, Ducaroir AM, Jaunet MR (1996) Study of the distribution of Cu in an acid sandy vineyard soil by three different methods. Eur J Soil Sci 47:523–532CrossRefGoogle Scholar
  80. Galli U, Schüepp H, Brunold C (1994) Heavy metal binding by mycorrhizal fungi. Physiol Plant 92:364–368CrossRefGoogle Scholar
  81. Garcia-Molina A, Andrés-Colás N, Perea-García A, Del Valle-Tascón S, Peñarrubia L, Puig S (2011) The intracellular Arabidopsis COPT5 transport protein is required for photosynthetic electron transport under severe copper deficiency. Plant J 65:848–860PubMedCrossRefPubMedCentralGoogle Scholar
  82. Garcia-Molina A, Andrés-Colás N, Perea-García A, Neumann U, Dodani SC, Huijser P, Peñarrubia L, Puig S (2013) The Arabidopsis COPT6 transport protein functions in copper distribution under copper-deficient conditions. Plant Cell Physiol 54:1378–1390PubMedCrossRefPubMedCentralGoogle Scholar
  83. Gasic K, Korban SS (2007) Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn. Planta 225:1277–1285PubMedCrossRefPubMedCentralGoogle Scholar
  84. Gill M (2014) Heavy metal stress in plants: a review. Int J Adv Res 2:1043–1055Google Scholar
  85. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930PubMedCrossRefPubMedCentralGoogle Scholar
  86. Girotto E, Ceretta CA, Brunetto G, Miotto A, Tiecher TL, De Conti L, Lourenzi CR, Lorensini F, Gubiani PI, Silva LS, Nicoloso FT (2014) Copper availability assessment of Cu-contaminated vineyard soils using black oat cultivation and chemical extractants. Environ Monit Assess 186:9051–9063PubMedCrossRefPubMedCentralGoogle Scholar
  87. Girotto E, Ceretta CA, Brunetto G, Santos DR, Silva LS, Lourenzi CR, Lorensini F, Vieira RCB, Schmatz R (2010) Acúmulo e formas de cobre e zinco no solo após aplicações sucessivas de dejeto líquido de suínos. Rev Bras Ciênc Solo 34:955–965CrossRefGoogle Scholar
  88. Girotto E, Ceretta CA, Rossatto LV, Farias JG, Brunetto G, Miotto A, Tiecher TL, De Conti L, Lourenzi CR, Schmatz R, Giachini A, Nicoloso FT (2016) Biochemical changes in black oat (Avena strigosa Schreb) cultivated in vineyard soils contaminated with copper. Plant Physiol Biochem 103:199–207PubMedCrossRefPubMedCentralGoogle Scholar
  89. Gomes NCM, Mendonça-Hagler LCS, Savvaidis I (1998) Metal bioremediation by microorganisms. Braz J Microbiol 29:85–92Google Scholar
  90. González-Chávez C, D’Haen J, Vangronsveld J, Dodd JC (2002) Copper sorption and accumulation by the extra radical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant Soil 240:287–297CrossRefGoogle Scholar
  91. Grael CFF, Kanashiro A, Kabeya LM, Jordão CO, Takeara R, Gobbo-Neto L, Polizello ACM, Lucisano-Valim YM, Lopes NP, Lopes JLC (2010) In vitro study of antioxidant and scavenger properties of phenolic compounds from Lychnophoraspecies. Quím Nova 33:867–870CrossRefGoogle Scholar
  92. Guilherme LRG, Marques JJ, Pierangeli MAP, Zuliani DQ, Campos ML, Marchi G (2005) Elementos-traço em solos e sistemas aquáticos. Torrado-Vidal P, Alleoni LRF, Cooper M, Silva AP Tópicos em ciência do solo. Sociedade Brasileira de Ciência do Solo, Viçosa 345–390Google Scholar
  93. Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H (2015) Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric Ecosyst Environ 206:46–59CrossRefGoogle Scholar
  94. Guo Y, George E, Marschner H (1996) Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants. Plant Soil 184:195–205CrossRefGoogle Scholar
  95. Guo WJ, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146:1697–1706PubMedPubMedCentralCrossRefGoogle Scholar
  96. Gupta DK, Chatterjee S, Datta S, Veer V, Walther C (2014) Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. Chemosphere 108:134–144PubMedCrossRefPubMedCentralGoogle Scholar
  97. Harter RD, Naidu R (2001) An assessment of environmental and solution parameter impacton trace-metal sorption by soils. Soil Sci Soc Am J 65:597–512CrossRefGoogle Scholar
  98. Haydon MJ, Kawachi M, Wirtz M, Hillmer S, Hell R, Krämer U (2012) Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell 24:724–737PubMedPubMedCentralCrossRefGoogle Scholar
  99. Hermand V, Julio E, Dorlhac de Borne F, Punshon T, Ricachenevsky FK, Bellec A, Gosti F, Berthomieu P (2014) Inactivation of two newly identified tobacco heavy metal ATPases leads to reduced Zn and Cd accumulation in shoots and reduced pollen germination. Metallomics 6:1427–1440PubMedPubMedCentralCrossRefGoogle Scholar
  100. Hernandez JA, Talavera JM, Martinez-Gomez P, Dicenta F, Sevilla F (2001) Response of antioxidative enzymes to plum pox vírus in two apricot cultivars. Physiol Plant 111:313–321PubMedCrossRefPubMedCentralGoogle Scholar
  101. Herrero-Hernández E, Andrades MS, Rodríguez-Cruz MS, Sánchez-Martín MJ (2011) Effect of spent mushroom substrate applied to vineyard soil on the behavior of copper-based fungicide residues. J Environ Manag 92:1849–1857CrossRefGoogle Scholar
  102. Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR (1999) Responsive-To-Antagonist1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97:383–393PubMedCrossRefPubMedCentralGoogle Scholar
  103. Horton P, Ruban A (2004) Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. J Exp Bot 56:365–373PubMedCrossRefPubMedCentralGoogle Scholar
  104. Huang XY, Deng F, Yamaji N, Pinson SR, Fujii-Kashino M, Danku J, Douglas A, Guerinot ML, Salt DE, Ma JF (2016) A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain. Nat Commun 7:12138. CrossRefPubMedPubMedCentralGoogle Scholar
  105. Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339PubMedPubMedCentralCrossRefGoogle Scholar
  106. Irtelli B, Petrucci WA, Navari-Izzo F (2009) Nicotianamine and histidine/proline are, respectively, the most important copper chelators in xylem sap of Brassica carinata under conditions of copper deficiency and excesso. J Exp Bot 60:269–277PubMedCrossRefPubMedCentralGoogle Scholar
  107. Ishimaru Y, Masuda H, Suzuki M, Bashir K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. J Exp Bot 58:2909–2915PubMedCrossRefPubMedCentralGoogle Scholar
  108. Islam MN, Taki G, Nguyen XP, Jo YT, Kim J, Park JH (2017) Heavy metal stabilization in contaminated soil by treatment with calcined cockle shell. Environ Sci Pollut Res 24:7177–7183CrossRefGoogle Scholar
  109. Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75:339–364CrossRefGoogle Scholar
  110. Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234CrossRefGoogle Scholar
  111. Jordão CP, Pereira WL, Carari DM, Fernandes RBA, De Almeida RM, Fontes MPF (2011) Adsorption from Brazilian soils of Cu (II) and Cd (II) using cattle manure vermicompost. Int J Environ Stud 68:719–736CrossRefGoogle Scholar
  112. Juang KW, Lee YI, Lai HY, Chen BO (2014) Influence of magnesium on copper phytotoxicity to and accumulation and translocation in grapevines. Ecotoxicol Environ Saf 104:36–42PubMedCrossRefPubMedCentralGoogle Scholar
  113. Jung HI, Gayomba SR, Rutzke MA, Craft E, Kochian LV, Vatamaniuk OK (2012) COPT6 is a plasma membrane transporter that functions in copper homeostasis in Arabidopsis and is a novel target of SQUAMOSA promoter-binding protein-like 7. J Biol Chem 287:33252–33267PubMedPubMedCentralCrossRefGoogle Scholar
  114. Kabata-Pendias A (2011) Trace elements in soils and plants. CRC Press, Boca RatónGoogle Scholar
  115. Kabata-Pendias A, Pendias H (2001) Trace metals in soils and plants. CRC Press, Boca RatonGoogle Scholar
  116. Kalaji HM, Guo P (2008) Chlorophyll fluorescence: a useful tool in barley plant breeding programs. In: Sânchez A, Gutierres SJ (eds) Photochemistry research progress. Nova Science Publishers, New York, pp 439–463Google Scholar
  117. Kaldorf M, Kuhn AJ, Schröder WH, Hildebrandt U, Bothe H (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154:718–728CrossRefGoogle Scholar
  118. Karagiannidis N, Nikolaou N (2000) Influence of arbuscular mycorrhizae on heavy metal (Pb and Cd) uptake, growth, and chemical composition of Vitis vinifera L. (cv. Razaki). Am J Enol Vitic 51:269–275Google Scholar
  119. Karagiannidis N, Nikolaou N, Mattheou A (1995) Influence of three VA-mycorrhiza species on the growth and nutrient uptake of three grapevine rootstocks and one table grape cultivar. Vitis 39:85–89Google Scholar
  120. Karagiannidis N, Velemis D, Stavropoulos N (1999) Root colonization and spore population by VA-mycorrhizal fungi in four grapevine rootstocks. Vitis 36:57–60Google Scholar
  121. Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207PubMedCrossRefGoogle Scholar
  122. Klauberg-Filho O, Siqueira JO, Moreira FDS, Soares CRFS, Silva S (2005) Ecologia, função e potencial de aplicação de fungos micorrízicos arbusculares em condições de excesso de metais pesados. In: Vidal-Torrado P, Alleoni LRF, Cooper M, Silva AP, Cardoso EJ (eds) Tópicos em Ciência do Solo. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 85–144Google Scholar
  123. Klaumann S, Nickolaus SD, Fürst SH, Starck S, Schneider S, Ekkehard Neuhaus H, Trentmann O (2011) The tonoplast copper transporter COPT5 acts as an exporter and is required for interorgan allocation of copper in Arabidopsis thaliana. New Phytol 192:393–404PubMedCrossRefGoogle Scholar
  124. Kobayashi Y, Kuroda K, Kimura K, Southron-Francis JL, Furuzawa A, Kimura K, Iuchi S, Kobayashi M, Taylor GJ, Koyama H (2008) Amino acid polymorphisms in strictly conserved domains of a P-type ATPase HMA5 are involved in the mechanism of copper tolerance variation in Arabidopsis. Plant Physiol 148:969–980PubMedPubMedCentralCrossRefGoogle Scholar
  125. Komárek M, Čadková E, Chrastný V, Bordas F, Bollinger JC (2010) Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects. Environ Int 36:138–151PubMedCrossRefGoogle Scholar
  126. Komárek M, Vaněk A, Ettler V (2013) Chemical stabilization of metals and arsenic in contaminated soils using oxides–a review. Environ Pollut 172:9–22PubMedCrossRefGoogle Scholar
  127. Kopittke PM, Asher CJ, Blamey FPC, Menzies NW (2009) Toxic effects of Cu2+ on growth, nutrition, root morphology, and distribution of Cu in roots of Sabi grass. Sci Total Environ 407:4616–4621PubMedCrossRefGoogle Scholar
  128. Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40:37–44PubMedCrossRefGoogle Scholar
  129. Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Biol 42:313–349CrossRefGoogle Scholar
  130. Krebs R, Gupta SK, Furrer G, Schulin R (1998) Solubility and plant uptake of metals with and without liming of sludge-amended soils. J Environ Qual 27:18–23CrossRefGoogle Scholar
  131. Küpper H, Setlik I, Spiller M, Küpper FC, Prásil O (2002) Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. J Phycol 38:429–441CrossRefGoogle Scholar
  132. Lago-Vila M, Rodríguez-Seijo A, Arenas-Lago D, Andrade L, Vega MFA (2017) Heavy metal content and toxicity of mine and quarry soils. J Soils Sediments 17:1331–1348CrossRefGoogle Scholar
  133. Lai HY, Juang KW (2010) Copper concentrations in grapevines and vineyardsoils in Central Taiwan. Soil Sci Plant Nutr 56:601–606CrossRefGoogle Scholar
  134. Lee S, An G (2009) Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ 32:408–416PubMedCrossRefGoogle Scholar
  135. Lee S, Jeong HJ, Kim SA, Lee J, Guerinot ML, An G (2009a) OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol 73:507–517CrossRefGoogle Scholar
  136. Lee S, Kim SA, Lee J, Guerinot ML, An G (2009b) Zinc deficiency-inducible Os ZIP8 encodes a plasma membrane-localized zinc transporter in rice. Mol Cell 29:551–558CrossRefGoogle Scholar
  137. Lee S, Ryoo N, Jeon JS, Guerinot ML, An G (2012) Activation of rice yellow stripe1-like 16 (OsYSL16) enhances iron efficiency. Mol Cell 33:117–126CrossRefGoogle Scholar
  138. Li L, Wu H, van Gestel CA, Peijnenburg WJ, Allen HE (2014) Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China. Environ Pollut 188:144–152PubMedCrossRefPubMedCentralGoogle Scholar
  139. Liang J, Yang Z, Tang L, Zeng G, Yu M, Li X, Wu H, Qian Y, Li X, Luo Y (2017) Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost. Chemosphere 181:281–288PubMedCrossRefPubMedCentralGoogle Scholar
  140. Llorens N, Arola L, Bladé C, Mas A (2000) Effects of copper exposure upon nitrogen metabolism in tissue cultured Vitis vinifera. Plant Sci 160:159–163PubMedCrossRefGoogle Scholar
  141. Lux A, Šottníková A, Opatrná J, Greger M (2004) Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiol Plant 120:537–545PubMedCrossRefGoogle Scholar
  142. Lyanguzova IV (2017) Dynamic trends of heavy metal contents in plants and soil under different industrial air pollution regimes. Russ J Ecol 48:311–320CrossRefGoogle Scholar
  143. Lynch J, Marschner P, Rengel Z (2012) Effect of internal and external factors on root growth and development. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic, London, pp 331–346CrossRefGoogle Scholar
  144. Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18CrossRefGoogle Scholar
  145. Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65:3049–3057PubMedCrossRefGoogle Scholar
  146. Mackie KA, Mueller T, Kandeler E (2012) Remediation of copper in vineyards: a mini review. Environ Pollut 167:16–26PubMedCrossRefGoogle Scholar
  147. Mädder P (2000) Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation. Biol Fertil Soils 31:150–156CrossRefGoogle Scholar
  148. Maia JDG, Naves RL, Garrido LR, Sônego OR, Kuhn GB (2003) Cultivo da Videira Niágara Rosada em Regiões Tropicais do Brasil. Embrapa Uva e Vinho, BrazilGoogle Scholar
  149. Marchezan C (2017) Estratégias para minimizar os efeitos do cobre no desenvolvimento de Vitis viníferas em solo com mais de 30 anos de aplicação de calda bordalesa (Artigo em preparação)Google Scholar
  150. Marshner H (1995) Mineral nutrition of higher plants, vol 674. Academic, LondonGoogle Scholar
  151. Martins V, Bassil E, Hanana M, Blumwald E, Gerós H (2014) Copper homeostasis in grapevine: functional characterization of the Vitis vinifera copper transporter 1. Planta 240:91–101PubMedCrossRefGoogle Scholar
  152. Mattias JL, Ceretta CA, Nesi CN, Girotto E, Trentin EE, Lorenzi CR, Vieira RCB (2010) Copper, zinc and manganese in soils of two watersheds in Santa Catarina with intensive use of pig slurry. Rev Bras Ciênc Solo 34:1445–1454CrossRefGoogle Scholar
  153. Maxwell K, Johnson GN (2000) Chorophyll fluorescence-a practical guide. J Exp Bot 51:659–668PubMedCrossRefGoogle Scholar
  154. McBride MB (1979) Mobility and reactions of VO2+ on Hydratedsmectite surfaces. Clay Clay Miner 27:91–96CrossRefGoogle Scholar
  155. McBride MB (1994) Environmental chemistry of soils. Oxford University Press, New YorkGoogle Scholar
  156. Mcride MB, Pinnavaia TJ, Mortland MM (1975) Electron spin relaxation and the mobility of manganese (II) exchange ions in smectite. Am Miner 60:66–72Google Scholar
  157. Meharg AA (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol Res 107:1253–1265PubMedCrossRefGoogle Scholar
  158. Meier S, Azcón R, Cartes P, Borie F, Cornejo P (2011) Alleviation of Cu toxicity in Oenothera picensis by copper-adapted arbuscular mycorrhizal fungi and treated agrowaste residue. Appl Soil Ecol 48:117–124CrossRefGoogle Scholar
  159. Mench M, Vangronsveld J, Lepp NW, Edwards R (1998) Physicochemical aspects and efficienty of trace element immobilization by soil amendments. In: Vangronsveld J, Cunningham SD (eds) Metal-contaminated soils: in situ inactivation and phytorestoration. Springer-Verlag, Berlin, pp 151–181Google Scholar
  160. Menguer PK, Farthing E, Peaston KA, Ricachenevsky FK, Fett JP, Williams LE (2013) Functional analysis of the rice vacuolar zinc transporter OsMTP1. J Exp Bot 64:2871–2883PubMedPubMedCentralCrossRefGoogle Scholar
  161. Merlino LCS, Melo WJ, Macedo FG, Guedes ACTP, Ribeiro MH, Melo VP, Melo GMP (2010) Bário, cádmio, cromo e chumbo em plantas de milho e em Latossolo após onze aplicações anuais de lodo de esgoto. Rev Bras Ciênc Solo 34:2031–2039CrossRefGoogle Scholar
  162. Michaud AM, Chappellaz C, Hinsinger P (2008) Copper phytotoxicity affects root elongation and iron nutrition in durum wheat (Triticum turgidum durum L.). Plant Soil 310:151–165CrossRefGoogle Scholar
  163. Migocka M (2015) Copper-transporting ATPases: the evolutionarily conserved machineries for balancing copper in living systems. IUBMB Life 67:737–745PubMedCrossRefGoogle Scholar
  164. Migocka M, Posyniak E, Maciaszczyk-Dziubinska E, Papierniak A, Kosieradzaka A (2015) Functional and biochemical characterization of cucumber genes encoding two copper ATPases CsHMA5.1 and CsHMA5.2. J Biol Chem 290:15717–15729PubMedPubMedCentralCrossRefGoogle Scholar
  165. Milner MJ, Seamon J, Craft E, Kochian LV (2014) Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot 64:369–381CrossRefGoogle Scholar
  166. Miotto A, Ceretta CA, Brunetto G, Nicoloso FT, Girotto E, Farias JG, Tiecher TL, De Conti L, Trentin G (2014) Copper uptake, accumulation and physiological changes in adult grapevines in response to excess copper in soil. Plant Soil 374:593–610CrossRefGoogle Scholar
  167. Mirlean N, Roisenberg A, Chies JO (2007) Metal contamination of vineyard soils in wet subtropics (southern Brazil). Environ Pollut 149:10–17PubMedCrossRefPubMedCentralGoogle Scholar
  168. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410PubMedPubMedCentralCrossRefGoogle Scholar
  169. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498PubMedCrossRefPubMedCentralGoogle Scholar
  170. Mott KA, Franks PJ (2001) The role of epidermal turgor in stomatal interactions following a local perturbation in humidity. Plant Cell Environ 24:657–662CrossRefGoogle Scholar
  171. Mysliwa-Kurdziel B, Prasad MNV, Strzalka K (2004) Photosynthesis in metal plants. In: Prasad MNV (ed) Heavy metal stress in plants: from molecule to ecosystems. Springer, Berlin, pp 146–181CrossRefGoogle Scholar
  172. Nachtigall GR, Nogueirol RC, Alleoni LRF, Cambri MA (2007) Copper concentration of vineyard soils as a function of pH variation and addition of poultry litter. Braz Arch Biol Technol 50:941–948CrossRefGoogle Scholar
  173. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216CrossRefGoogle Scholar
  174. Navarrete IA, Gabiana CC, Dumo JRE, Salmo SG, Guzman MALG, Valera NS, Espiritu EQ (2017) Heavy metal concentrations in soils and vegetation in urbanareas of Quezon City, Philippines. Environ Monit Assess 189:145–160PubMedCrossRefPubMedCentralGoogle Scholar
  175. North GR, Nobel PS (1995) Hydraulic conductivity of concentric root tissues of Agave deserti Engelm. Under wet and drying conditions. New Phytol 130:47–57CrossRefGoogle Scholar
  176. Nóvoa-Munõz JC, Queijeiro JMG, Blanco-Ward D, Álvarez-Olleros C, Martínez-Cortizas A, Garciarodeja E (2007) Total copper content and its distribution in acid vineyards soils developed from granitic rocks. Sci Total Environ 378:23–27PubMedCrossRefPubMedCentralGoogle Scholar
  177. Oehl F, Sieverding E, Mäder P, Dubois D, Ineichen K, Boller T, Wiemken A (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583PubMedCrossRefGoogle Scholar
  178. de Oliveira PD, Ambrosini VG, de Melo GWB, Zalamena J, Brunetto G (2015) Uso de calcário na amenização da toxidez de cobre em videiras jovens. Científica 43:427–435CrossRefGoogle Scholar
  179. Ouzounidou G, Eleftheriou EP, Karatag S (1992) Ecophysical and ultrastructural effects of copper in Thlaspi ochroleucum (Cruciferae). Can J Bot 70:947–957CrossRefGoogle Scholar
  180. Ouzounidou G (1996) The use of photoacoustic spectroscopy in assessing leaf photosynthesis under copper stress: correlation of energy storage to photosystem II fluorescence parameters and redox change of P–700. Plant Sci 113:229–237CrossRefGoogle Scholar
  181. Ouzounidou G, Ilias I (2005) Hormone-induced protection of sunflower photosynthetic apparatus against copper toxicity. Biol Plant 49:223–228CrossRefGoogle Scholar
  182. Paa MC, Ceretta CA, Tarouco CP, Lourenzi CR, Silva LS, Soriani HH, Nicoloso FT, Cesco S, Mimmo T, Brunetto G (2018) Soil amendment as a strategy for the growth of young vines when replanting vineyards in soils with high copper content. Plant Physiol Biochem 126:152–162CrossRefGoogle Scholar
  183. Paa TT, Tiecher TL, Rangel WM, Soares CRFS, Deuner S, Tarouco CP, Giachini AJ, Nicoloso FT, Brunetto G, Coronas MV, Ceretta CA (2017) Effects of Rhizophagus clarus and P availability in the tolerance and physiological response of Mucuna cinereum to copper. Plant Physiol Biochem 122(2017):46–56Google Scholar
  184. Pacyna JM (1986) Atmospheric trace elements from natural and anthropogenic sources. In: Nriagu JO, Davidson CI (eds) Toxic metals in the atmosphere. Wiley, New York, pp 33–52Google Scholar
  185. Pal R, Rai JPN (2010) Phytochelatins: peptides involved in heavy metal detoxification. Appl Biochem Biotechnol 160:945–963PubMedCrossRefGoogle Scholar
  186. Paula LS, Silva BC, Pinho WCS, Barbosa MAM, Guedes-Lobato EMS, Segura FR, Batista BL, Júnior FB, Lobato AKS (2015) Silicon (Si) ameliorates the gas exchange and reduces negative impacts on photosynthetic pigments in maize plants under Zinc (Zn) toxicity. Aust J Crop Sci 9:901–908Google Scholar
  187. Pearcy RW, Yang W (1998) The functional morphology of light capture and carbon gain in Redwood forest understorey plant Adenocaulon bicolor (Hook.). Funct Ecol 12:543–552CrossRefGoogle Scholar
  188. Peñarrubia L, Romero P, Carrió-Seguí A, Andrés-Bordería A, Moreno J, Sanz A (2015) Temporal aspects of copper homeostasis and its crosstalk with hormones. Front Plant Sci 6:255. CrossRefPubMedPubMedCentralGoogle Scholar
  189. Perea-García A, Garcia-Molina A, Andrés-Colás N, Vera-Sirera F, Pérez-Amador MA, Puig S, Peñarrubia L (2013) Arabidopsis copper transport protein COPT2 participates in the cross talk between iron deficiency responses and low-phosphate signaling. Plant Physiol 162:180–194PubMedPubMedCentralCrossRefGoogle Scholar
  190. Perumalla CJ, Peterson CA (1986) Deposition of Caspary bands and suberin lamellae in the exodermis and endodermis of young corn and onion roots. Can J Bot 64:1873–1878CrossRefGoogle Scholar
  191. Pilon M (2017) The copper microRNAs. New Phytol 213:1030–1035PubMedCrossRefPubMedCentralGoogle Scholar
  192. Podar D, Scherer J, Noordally Z, Herzyk P, Nies D, Sanders D (2012) Metal selectivity determinants in a family of transition metal transporters. J Biol Chem 287:3185–3196PubMedCrossRefPubMedCentralGoogle Scholar
  193. Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105PubMedCrossRefPubMedCentralGoogle Scholar
  194. Prasad MNV (2004) Phytoremediation of metals and radionuclides in the environment: the case for natural hyperaccumulators, metal transporters, soil-amending chelators and trans- genic plants. In: MNV P (ed) Heavy metal stress in plants: from biomolecules to eco- systems, 2nd edn. Springer, Berlin, pp 345–391CrossRefGoogle Scholar
  195. Printz B, Lutts S, Hausman JF, Sergeant K (2016) Copper trafficking in plants and its implication on Cell Wall dynamics. Front Plant Sci 7:601. CrossRefPubMedPubMedCentralGoogle Scholar
  196. Puig S (2014) Function and regulation of the plant COPT family of high- affinity copper transport proteins. Adv Bot 476917.
  197. Quartacci MF, Pinzino C, Sgherri CLM, Dalla Vecchia F, Navari-Izzo F (2000) Growth in excess copper induces changes in the lipid composition and fluidity of PSII-enriched membranes in wheat. Physiol Plant 108:87–93CrossRefGoogle Scholar
  198. Ramalho JFGP, Amaral Sobrinho NMB, Velloso ACX (1999) Acúmulo de metais pesados em solos cultivados com cana de açúcar pelo uso contínuo de adubação fosfatada e água de irrigação. Rev Bras Ciênc Solo 2:971–979CrossRefGoogle Scholar
  199. Raven PH, Berg LR, Johnson GB (1998) Environment. Saunders College Publishing, New YorkGoogle Scholar
  200. Raven JA, Evans MCW, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2 evolving organisms. Photosynth Res 60:111–149CrossRefGoogle Scholar
  201. Ravet K, Pilon M (2013) Copper and iron homeostasis in plants: the challenges of oxidative stress. Antioxid Redox Signal 19:919–932PubMedPubMedCentralCrossRefGoogle Scholar
  202. Reinhardt DH, Roswt TL (1995) Salinity accelerates endodermal development and induces an exodermis in cotton seedling roots. Environ Exp Bot 35:563–574CrossRefGoogle Scholar
  203. Remy E, Cabrito TR, Batista RA, Hussein MA, Teixeira MC, Athanasiadis A, Sá-Correia I, Duque P (2014) Intron retention in the 5′UTR of the novel ZIF2 transporter enhances translation to promote zinc tolerance in arabidopsis. PLoS Genet 10:e1004375. CrossRefPubMedPubMedCentralGoogle Scholar
  204. Ren Y, Liu Y, Chen H, Li G, Zhang X, Zhao J (2012) Type 4 metallothionein genes are involved in regulating Zn ion accumulation in late embryo and in controlling early seedling growth in Arabidopsis. Plant Cell Environ 35:770–789PubMedCrossRefPubMedCentralGoogle Scholar
  205. Repetto O, Bestel-Corre G, Dumas-Gaudot E, Berta G, Gianinazzi-Pearson V, Gianinazzi S (2003) Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots. New Phytol 157:555–567CrossRefGoogle Scholar
  206. Ricachenevsky FK, Menguer PK, Sperotto RA, Fett JP (2015) Got to hide your Zn away: molecular control of Zn accumulation and biotechnological applications. Plant Sci 236:1–17PubMedCrossRefPubMedCentralGoogle Scholar
  207. Ricachenevsky FK, Menguer PK, Sperotto RA, Williams LE, Fett JP (2013) Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies. Front Plant Sci 14:4–144Google Scholar
  208. Ricachenevsky FK, Sperotto RA, Menguer PK, Sperb ER, Lopes KL, Fett JP (2011) Zinc-induced facilitator-like family in plants: lineage-specific expansion in monocotyledons and conserved genomic and expression features among rice (Oryza sativa) paralogs. BMC Plant Biol 25:11–20Google Scholar
  209. Rodrigo-Moreno A, Andrés-Colás N, Poschenrieder C, Gunsé B, Peñarrubia L, Shabala S (2013) Calcium- and potassium-permeable plasma membrane transporters are activated by copper in Arabidopsis root tips: linking copper transport with cytosolic hydroxyl radical production. Plant Cell Environ 36:844–855PubMedCrossRefPubMedCentralGoogle Scholar
  210. Ronda RJ, Bruin HAR, Holtslag AAM (2001) Representation of the canopy conductance in modelling the surface energy budget for low vegetation. J Appl Meteorol Climatol 40:1431–1444CrossRefGoogle Scholar
  211. Rosa DJ, Ambrosini VG, Basso A, Borghezan M, Brunetto G, Pescador R (2014) Photosynthesis and growth of young “Niágara Branca” vines (Vitis labrusca L.) cultivated in soil with high levels of cooper and liming. BIO Web Conferences 3.
  212. Ross SM (1994) Toxic metals in soil–plant systems. Wiley, ChichesterGoogle Scholar
  213. Ryan BM, Kirby JK, Degryse F, Harris H, McLaughlin MJ, Scheiderich K (2013) Copper speciation and isotopic fractionation in plants: uptake and translocation mechanisms. New Phytol 199:367–378PubMedCrossRefPubMedCentralGoogle Scholar
  214. Sagardoy R, Vázquez S, Florez-Sarasa ID, Albacete A, Ribas-Carbó M, Flexas J, Abadía J, Morales F (2010) Stomatal and mesophyll conductances to CO2 are the main limitations to photosynthesis in sugar beet (Beta vulgaris) plants grown with excess zinc. New Phytol 187:145–158PubMedCrossRefPubMedCentralGoogle Scholar
  215. Salt DE, Blaylock M, Kumar NP, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol 13:468–574CrossRefGoogle Scholar
  216. Sancenón V, Puig S, Mateu-Andrés I, Dorcey E, Thiele DJ, Peñarrubia L (2004) The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J Biol Chem 279:15348–15355PubMedCrossRefPubMedCentralGoogle Scholar
  217. Sancenón V, Puig S, Mira H, Thiele DJ, Peñarrubia L (2003) Identification of a copper transporter family in Arabidopsis thaliana. Plant Mol Biol l51:577–587CrossRefGoogle Scholar
  218. Santana NA, Ferreira PAA, Soriani HH, Brunetto G, Nicoloso FT, Antoniolli ZI, Jacques RJS (2015) Interaction between arbuscular mycorrhizal fungi and vermicompost on copper phytoremediation in a sandy soil. Appl Soil Ecol 96:172–182CrossRefGoogle Scholar
  219. Santos GA, Silva LS, Canellas LP, Camargo FAO (2008) Fundamentos da matéria orgânica do solo: ecossistemas tropicais e subtropicais, 2nd edn. Metrópole, Porto Alegre, pp 159–170Google Scholar
  220. Sasaki A, Yamaji N, Ma JF (2014) Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J Exp Bot 65:6013–6021PubMedPubMedCentralCrossRefGoogle Scholar
  221. Schübler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  222. Seaward MRD, Richardson DHS (1990) Atmospheric sources of metal pollution and effects on vegetation. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 75–92Google Scholar
  223. Seigneurin-Berny D, Gravot A, Auroy P, Mazard C, Kraut A, Finazzi G, Grunwald D, Rappaport F, Vavasseur A, Joyard J, Richaud P, Rolland N (2006) HMA1, a new Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions. J Biol Chem 281:2882–2892PubMedCrossRefPubMedCentralGoogle Scholar
  224. Seshadri B, Bolan NS, Choppala G, Kunhikrishnan A, Sanderson P, Wang H, Currie LD, Tsang DCW, Ok WS, Kim G (2017) Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil. Chemosphere 184:197–206PubMedCrossRefPubMedCentralGoogle Scholar
  225. Shaw AJ (1989) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, New York, p 355Google Scholar
  226. Sheldon AR, Menzies NW (2005) The effect of copper toxicity on the growth and root morphology of Rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant Soil 278:341–349CrossRefGoogle Scholar
  227. Shi X, Zhang C, Wang H, Zhang F (2005) Effect of Si on the distribution of Cd in rice seedlings. Plant Soil 272:53–60CrossRefGoogle Scholar
  228. Simão JBP (1999) Mitigação da fitotoxidez de metais pesados no solo, através do uso de materiais orgânicos e inorgânicos. Tese (Doutorado) – Universidade Federal de Lavras, LavrasGoogle Scholar
  229. Sinclair SA, Krämer U (2012) The zinc homeostasis network of land plants. Biochim Biophys Acta 1823:1553–1567PubMedCrossRefPubMedCentralGoogle Scholar
  230. Siqueira JO, Pouyú Rojas E, Moreira FMS (1999) Micorrizas arbusculares no crescimento pós-transplantio de mudas de arvóres em solo com excesso de metais pesados. R Bras Ci Solo 23:569–580CrossRefGoogle Scholar
  231. Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd edn. Academic, Cambridge, MAGoogle Scholar
  232. Soares MR (2004) Coeficiente de distribuição (Kd) de metais pesados em solos do Estado de São Paulo. Tese (Doutorado em Ciência do Solo e Nutrição de Plantas) – Escola Superior de Agricultura Luiz de Queiroz / Universidade de São PauloGoogle Scholar
  233. Soares CRFS, Siqueira JO (2008) Mycorrhiza and phosphate protection of tropical grass species against heavy metal toxicity in multi-contaminated soil. Biol Fertil Soils 44:833–841CrossRefGoogle Scholar
  234. Sofo A, Vitti A, Nuzzaci M, Tataranni G, Scopa A, Vangronsveld J, Remans T, Falasca G, Altamura MM, Degola F, Sanità di Toppi L (2013) Correlation between hormonal homeostasis and morphogenic responses in Arabidopsis thaliana seedlings growing in a Cd/Cu/Zn multi-pollution context. Physiol Plant 149:287–298CrossRefGoogle Scholar
  235. Sousa DMG, Miranda LN, Oliveira SA (2007) Acidez do solo e sua correção. In: Novais RF, Alvarez VH, Barros NF, Fontes RL, Cantarutti RB, Neves JCL (eds) Fertilidade do Solo. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 205–274Google Scholar
  236. Souza EP, Silva IF, Ferreira LE (2011) Mecanismos de tolerância a estresses por metais pesados em plantas. Rev Bras Agrociênc 17:167–173Google Scholar
  237. Sparks DL (2003) Environmental soil chemistry. Academic, San DiegoCrossRefGoogle Scholar
  238. Sposito G (1984) The surfasse chemistry of soils. Oxford University Press, New YorkGoogle Scholar
  239. Sposito G (1989) The chemistry of soils. Oxford University Press, New YorkGoogle Scholar
  240. Stevenson FJ (1982) Humus chemistry. Wiley, New YorkGoogle Scholar
  241. StüRmer SL, Siqueira JO (2006) Diversity of Arbuscular Mycorrhizal Fungi in Brazilian ecosystems. In: Moreira FMS, Siqueira JO, Brussaard L (eds) Soil biodiversity in Amazonian and other Brazilian ecosystems. Londres, pp 206–236CrossRefGoogle Scholar
  242. Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK, Nakanishi H (2012) The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ 35:1948–1957PubMedCrossRefPubMedCentralGoogle Scholar
  243. Tan J, Wang J, Chai T, Zhang Y, Feng S, Li Y, Zhao H, Liu H, Chai X (2013) Functional analyses of TaHMA2, P(1B)-type ATPase in wheat. Plant Biotechnol J 11:420–431PubMedCrossRefPubMedCentralGoogle Scholar
  244. Tennstedt P, Peisker D, Böttcher C, Trampczynska A, Clemens S (2009) Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol 149:938–948PubMedPubMedCentralCrossRefGoogle Scholar
  245. Tessier A, Campbel PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851CrossRefGoogle Scholar
  246. Tiecher T, Brunetto G, Ceretta CA, Comin JJ, Girotto E, Miotto A, Moraes MP, Benedet L, Ferreira PAA, Lourenzi CR, Couto R (2013) Forms and accumulation of copper and zinc in a sandy typichapludalf soil after long-term application of pig slurry and deep litter. Rev Bras Ciênc Solo 37:812–824CrossRefGoogle Scholar
  247. Tiecher TL, Ceretta CA, Ferreira PAA, Lourenzi CR, Tiecher T, Girotto E, Nicoloso FT, Soriani HH, De Conti L, Mimmo T, Cesco S, Brunetto G (2016a) The potential of Zea mays L. in remediating copper and zinc contaminated soils for grapevine production. Geoderma 262:52–61CrossRefGoogle Scholar
  248. Tiecher TL, Tiecher T, Ceretta CA, Ferreira PAA, Nicoloso FT, Soriani HH, De Conti L, Kulmann MSS, Schneider RO, Brunetto G (2017) Tolerance and translocation of heavy metals in young grapevine (Vitis vinifera) grown in sandy acidic soil with interaction of high doses of copper and zinc. Sci Hortic 222:203–212CrossRefGoogle Scholar
  249. Tiecher TL, Tiecher T, Ceretta CA, Ferreira PAA, Nicoloso FT, Soriani HH, Tassinari A, Paranhos JT, De Conti L, Brunetto G (2016b) Physiological and nutritional status of black oat (Avena strigosa Schreb.) grown in soil with interaction of high doses of copper and zinc. Plant Physiol Biochem 106:253–263PubMedCrossRefPubMedCentralGoogle Scholar
  250. Tiong J, McDonald GK, Genc Y, Pedas P, Hayes JE, Toubia J, Langridge P, Huang CY (2014) HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply. New Phytol 201:131–143PubMedCrossRefPubMedCentralGoogle Scholar
  251. Toledo MCM, Oliveira SMB, Melfi AJ (2000) Intemperismo e formação do solo. In: Teixeira W, Toledo MCM, Fairchild TR, Taioli F (eds) Decifrando a terra. Oficinas de Textos, São Paulo, pp 139–166Google Scholar
  252. Torfstein A, Teutsch N, Tirosh O, Shaked Y, Rivlin T, Zipori A, Stein M, Lazar B, Erel Y (2017) Chemical characterization of atmospheric dust from a weekly time series in the North Red Sea between 2006 and 2010. Geochim Cosmochim Acta 211:373–393CrossRefGoogle Scholar
  253. Toselli M, Baldi E, Marcolini G, Malaguti D, Quartieri M, Sorrenti G, Marangoni B (2009b) Response of potted grapevines to increasing soil copper concentration. Aust J Grape Wine Res 15:85–92CrossRefGoogle Scholar
  254. Toselli M, Schiatti P, Ara D, Bertacchini A, Quartieri M (2009a) The accumulation of copper in soils of the Italian region Emilia-Romagna. Plant Soil Environ 55:74–79CrossRefGoogle Scholar
  255. Tyler G (1981) Heavy metals in soil biology and biochemistry. In: Paul EA, Ladd JN (eds) Soil biochemistry. Marcel Dekker, New York, pp 371–414Google Scholar
  256. Vangronsveld J, Ruttens A (1999) In-situ reclamation techniques for heavy metal contaminated soils. In: Siqueira JO, Moreira FMS, Lopes AS, Guilherme LR, Faquin V, Furtini Neto AE, Carvalho JG (eds) Inter-relação fertilidade, biologia do solo e nutrição de plantas. Sociedade Brasileira de Ciência do Solo, Universidade Federal de Lavras, Lavras, pp 389–404Google Scholar
  257. Vavoulidou E, Avramides EJ, Papadopoulos P, Dimirkou A, Charoulis A, Konstantinidou-Doltsinis S (2005) Copper content in agricultural soils related to cropping systems in different regions of Greece. Commun Soil Sci Plant Anal 36:759–773CrossRefGoogle Scholar
  258. Weng L, Temminghoff EJM, Lofts S, Tipping E, Van Riemsdijk WH (2002) Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ Sci Technol 36:4804–4810PubMedCrossRefGoogle Scholar
  259. Wightwick AM, Mollah MR, Partington DL, Allinson G (2008) Copper fungicide residues in Australian vineyard soils. J Agric Food Chem 56:2457–2464PubMedCrossRefGoogle Scholar
  260. Wintz H, Fox T, Wu YY, Feng V, Chen W, Chang HS, Zhu T, Vulpe C (2003) Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. J Biol Chem 278:47644–47653PubMedCrossRefGoogle Scholar
  261. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:20. CrossRefGoogle Scholar
  262. Xiao R, Wang S, Li R, Wang JJ, Zhang Z (2017) Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicol Environ Saf 141:17–24PubMedCrossRefPubMedCentralGoogle Scholar
  263. Yang Y, Sun C, Yao Y, Zhang Y, Achal V (2011) Growth and physiological responses of grape (Vitis vinifera“Combier) to excess zinc. Acta Physiol Plant 33:1483–1491CrossRefGoogle Scholar
  264. Yruela I (2005) Copper in plants. Braz J Plant Physiol 171:145–156CrossRefGoogle Scholar
  265. Yuan M, Li X, Xiao J, Wang S (2011) Molecular and functional analyses of COPT/Ctr-type copper transporter-like gene family in rice. BMC Plant Biol 11:69. CrossRefPubMedPubMedCentralGoogle Scholar
  266. Zang XY, Gong SL, Shen ZX, Mei FM, Xi XX, Liu LC, Zhou ZJ, Wang D, Wang YD, Cheng Y (2003) Characterization of soil dust aerosol in China and its transport and distribuition during 2001 ACE-Asia: 1. Netw Obs J Geophy Res D9.
  267. Zhang XP, Deng W, Yang XM (2002) The background concentrations of 13 soil trace elements and theirrelationships to parent materials and vegetation in Xizang (Tibet), China. J Asian Earth Sci 21:167–174CrossRefGoogle Scholar
  268. Zhang XH, Wang YS, Lin AJ (2012) Effects of arbuscular mycorrhizal colonization on the growth of upland rice (Oryza sativa L.) in soil experimentally contaminated with Cu and Pb. J Clin Toxicol 3:1–5Google Scholar
  269. Zhang C, Wang L, Nie Q, Zhang W, Zhang F (2008) Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). Environ Exp Bot 62:300–307CrossRefGoogle Scholar
  270. Zheng L, Yamaji N, Yokosho K, Ma JF (2012) YSL16 is a phloem-localized transporter of the copper-nicotianamine complex that is responsible for copper distribution in rice. Plant Cell 24:3767–3782PubMedPubMedCentralCrossRefGoogle Scholar
  271. Zupančič N (2017) Influence of climate factors on soil heavy metal content in Slovenia. J Soils Sediments 17:1073–1083CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Paulo Ademar Avelar Ferreira
    • 1
  • Cledimar Rogerio Lourenzi
    • 2
  • Tales Tiecher
    • 3
  • Tadeu Luis Tiecher
    • 1
  • Felipe Klein Ricachenevsky
    • 1
  • Gustavo Brunetto
    • 1
  • Admir José Giachini
    • 2
  • Cláudio Roberto Fonsêca Sousa Soares
    • 2
  1. 1.Federal University of Santa MariaSanta MariaBrazil
  2. 2.Federal University of Santa CatarinaFlorianopolisBrazil
  3. 3.Federal University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations