Advertisement

Phytoremediation in Waste Management: Hyperaccumulation Diversity and Techniques

  • Resham Sharma
  • Renu Bhardwaj
  • Vandana Gautam
  • Shagun Bali
  • Ravdeep Kaur
  • Parminder Kaur
  • Manik Sharma
  • Vinod Kumar
  • Anket Sharma
  • Sonia
  • Ashwani Kumar Thukral
  • Adarsh Pal Vig
  • Puja Ohri
Chapter

Abstract

Phytoremedial technologies such as phytoextraction, phytosequestration, phytodegradation, phytostabilization, rhizoremediation, evapotranspiration for improving the quality of polluted soil and water offer cheap, ecosystem friendly and simple alternative to other conservative approaches. Their novel use has gained practical application to clean up large hectares of spiked soils in many developed and developing countries. One of the main reasons for this remains the widespread diversity of hyperaccumulators which have been used for such remedial measures. Still a lot needs to be achieved through genetic and metabolic studies on these widely cultivated hyperaccumulator plants which can lead to better designed models customized for gaining popularity of the green technology backed by a steady economic turnover.

Keywords

Ecosystem Hyperaccumulators Phytoextraction Remediation 

References

  1. Abaga NO, Dousset S, Munier-Lamy C, Billet D (2013) Effectiveness of vetiver grass (Vetiveria zizanioides L. Nash) for phytoremediation of endosulfan in two cotton soils from Burkina Faso. Int J Phytoremediation 16(1):95–108CrossRefGoogle Scholar
  2. Abioye OP, Ijah UJJ, Aransiola SA (2017) Phytoremediation of soil contaminants by the biodiesel plant Jatropha curcas. In: Bauddh K, Singh B, Korstad J (eds) Phytoremediation potential of bioenergy plants, 1st edn. Springer, Singapore, pp 97–137CrossRefGoogle Scholar
  3. Adefemi OS, Awokunmi EE (2013) Uptake of heavy metals by tomato (Lycopersicum esculentus) grown on soil collected from dumpsites in Ekiti State, South West, Nigeria. Int J Chem 5:70–75CrossRefGoogle Scholar
  4. Ahmadpour P, Nawi AM, Abdu A et al (2010) Uptake of heavy metals by Jatropha curcas L. planted in soils containing sewage sludge. Am J Appl Sci 7:1291–1299CrossRefGoogle Scholar
  5. Ahmadpour P, Soleimani M, Ahmadpour F, Abdu A (2014) Evaluation of copper bioaccumulation and translocation in Jatropha curcas grown in a contaminated soil. Int J Phytoremediation 16(5):454–468CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aken BV, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44(8):2767–2776CrossRefPubMedPubMedCentralGoogle Scholar
  7. Albright VC, Coats JR (2014) Disposition of atrazine metabolites following uptake and degradation of atrazine in switchgrass. Int J Phytoremediation 16(1):62–72CrossRefPubMedPubMedCentralGoogle Scholar
  8. Alkorta I, Becerril J, Garbisu C (2011) Phytostabilization of metal contaminated soils. Rev Environ Health 25(2):135–146Google Scholar
  9. Alvarenga P, Goncalves AP, Fernandes RM et al (2008) Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Sci Total Environ 406:43–56CrossRefPubMedPubMedCentralGoogle Scholar
  10. Alvarenga P, Goncalves AP, Fernandes RM et al (2009) Organic residues as immobilizing agents in aided phytostabilization: (I) effects on soil chemical characteristics. Chemosphere 74(10):1292–1300CrossRefGoogle Scholar
  11. Amari T, Ghnaya T, Sghaier S, Porriini M, Lucchini G (2016) Evaluation of Ni2+ phytoextraction potential in Mesembryanthemum crystallium (halophyte) and Brassica juncea. J Bioremed Biodegr 7:336Google Scholar
  12. Anand AK, Mohan M, Haider SZ, Sharma A (2011) Essential oil composition and antimicrobial activity of three Ocimum species from Uttarakhand (India). Int J Pharm Sci 3:223–225Google Scholar
  13. Annan K, Kojo A, Asare C, Asare-Nkansah S, Bayor M (2010) Profile of heavy metals in some medicinal plants from Ghana commonly used as components of herbal formulations. Pharm Res 2:41–44Google Scholar
  14. Arby AME, Elbordiny MM (2006) Impact of reused wastewater for irrigation on availability of heavy metals in sandy soils and their uptake by plants. J Appl Sci Res 2:106–111Google Scholar
  15. Arru L, Rognoni S, Baroncini M, Bonatti PM, Perata P (2004) Copper localization in Cannabis sativa L. grown in a copper-rich solution. Euphytica 140:33–38CrossRefGoogle Scholar
  16. Ashraf MY, Azhar N, Ashraf M, Hussain M, Arshad M (2011) Influence of lead on growth and nutrient accumulation in canola (Brassica napus L.) cultivars. J Environ Biol 32(5):659–666PubMedPubMedCentralGoogle Scholar
  17. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyper accumulate metal elements: a review of their distribution, ecology, and phytochemistry. Biorecovery 1:81–126Google Scholar
  18. Balsamo RA, Kelly WJ, Satrio JA, Ruiz-Felix MN, Fetterman M, Wynn R, Hagel K (2015) Utilization of grasses for potential biofuel production and phytoremediation of heavy metal contaminated soils. Int J Phytoremediation 17(5):448–455CrossRefPubMedPubMedCentralGoogle Scholar
  19. Barnes J, Anderson LA, Phillipson DJ (2007) Sage. Herbal medicines, 3rd edn. The Pharmaceutical Press, London, pp 512–514Google Scholar
  20. Basgel S, Erdemoglu SB (2006) Determination of mineral and trace elements in some medicinal herbs and their infusions consumed in Turkey. Sci Total Environ 359:82–89CrossRefGoogle Scholar
  21. Bech J, Corrales I, Tume P, Barceló J, Duran P, Roca N et al (2012) Accumulation of antimony and other potentially toxic elements in plants around a former antimony mine located in the Ribes Valley (Eastern Pyrenees). J Geochem Explor 113:100–105CrossRefGoogle Scholar
  22. Begonia MFT, Begonia GB, Ighoavodha M, Okuyiga-Ezem O, Crudup B (2001) Chelate-induced phytoextraction of lead from contaminated soils using Tall Fescue (Festuca arundinacea). J Miss Acad Sci 46(1):15Google Scholar
  23. Begonia MFT, Begonia GB, Ighoavodha M, Gilliard D (2005) Lead accumulation by Tall Fescue (Festuca arundinacea Schreb.) Grown on a lead-contaminated soil. Int J Environ Res Public Health 2(2):228–233CrossRefPubMedPubMedCentralGoogle Scholar
  24. Behera L, Nayak MR, Patel D, Mehta A, Sinha SK, Gunaga R (2015) Agroforestry practices for physiological amelioration of salt affected soils. J Plant Stress Physiol 1:13–18CrossRefGoogle Scholar
  25. Belliturk K, Shrestha P, Görres JH (2015) The importance of phytoremediation of heavy metal contaminated soil using vermicompost for sustainable agriculture. J Rice Res 3:e114Google Scholar
  26. Benabid H, Ghorab MF (2013) Study of the translocation and distribution of cadmium into bean plants (Phaseolus vulgaris) using labelled Cd-109. J Nano Sci Eng 3:108–111CrossRefGoogle Scholar
  27. Berti WR, Cunningham SD (2000) Phytostabilization of metals. In: Raskin IB, Ensley D (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 71–88Google Scholar
  28. Bhattacharjee S, Kar S, Chakravarty S (2004) Mineral compositions of Datura: a traditional tropical medicinal plant. Commun Soil Sci Plant Anal 35:937–946CrossRefGoogle Scholar
  29. Bhattavharyya N (2012) Wasteland management with medicinal plants. Med Aromat Plants 1:e10Google Scholar
  30. Bisht S, Pandey P, Bhargava B, Sharma S, Kumar V, Sharma KD (2015) Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz J Microbiol 46:7–21CrossRefPubMedPubMedCentralGoogle Scholar
  31. Boonyapookana B, Parkpian P, Techapinyawat S, DeLaune RD, Jugsujinda A (2005) Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco (Nicotiana tabacum), and vetiver (Vetiveria zizanioides). J Environ Sci Health. A, Toxic/Hazard Subst Environ Eng 40:117–137CrossRefGoogle Scholar
  32. Bora M, Joshi N, Chaudhary P (2016) Heavy metal uptake capacity of some trees for phytoremedial application. Int J Recent Sci Res 7(2):8880–8884Google Scholar
  33. Brewer EP, Saunders JA, Angle JS, Chaney RL, McIntosh MS (1999) Somatic hybridization between the zinc accumulator Thlaspi caerulescens and Brassica napus. Theor Appl Genet 99:761–771CrossRefGoogle Scholar
  34. Brooks RR (1998) Plants that hyper accumulate heavy metals. CAB International, WallingfordGoogle Scholar
  35. Castro S, Davis LC, Erickson LE (2001) Phytodegradation kinetics of methyl benzotriazole. In: Proceedings of conference on environmental research, pp 68–82Google Scholar
  36. Cay S, Uyanik A, Engin MS (2016) EDTA supported phytoextraction of Cd from contaminated soil by four different ornamental plant species. Soil Sediment Contam: Int J 25(3):346–355CrossRefGoogle Scholar
  37. Chaney RL, Baklanov IA (2017) Phytoremediation and phytomining: status and promise. Adv Bot Res 8(3):189–221CrossRefGoogle Scholar
  38. Chen H, Cutright T (2001) EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere 45:21–28CrossRefPubMedPubMedCentralGoogle Scholar
  39. Chen X, Wu C, Tang J, Hu S (2005) Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chemosphere 60:665–671CrossRefPubMedPubMedCentralGoogle Scholar
  40. Chen J, Xu QX, Su Y, Shi ZQ, Han FX (2013) Phytoremediation of organic polluted soil. J Bioremed Biodegr 4:e132Google Scholar
  41. Christine N, Hantzis PLJ, Quinn CF, Pilon-Smits EAH (2011) Effects of selenium accumulation on reproductive functions in Brassica juncea and Stanleya pinnata. J Exp Bot: 1–8Google Scholar
  42. Citterio S, Santagostino A, Fumagalli P, Prato N, Ranalli P, Sgorbati S (2003) Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant Soil 256:243–252CrossRefGoogle Scholar
  43. Cook RL, Hesterberg D (2013) Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons. Int J Phytoremediation 15:844–860CrossRefPubMedPubMedCentralGoogle Scholar
  44. Danh LT, Troung R, Mammucari T, Foster NT (2009) Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. Int J Phytochem 11:664–691CrossRefGoogle Scholar
  45. Deng L, Li Z, Wang J, Liu H, Li N, Wu L, Hu P, Luo Y, Christie P (2016) Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies. Int J Phytoremediation 18(2):134–140CrossRefPubMedPubMedCentralGoogle Scholar
  46. Divakara BN, Upadhyaya HD, Wani SP, Laxmipathi GCL (2010) Biology and genetic improvement of Jatropha curcas L.: a review. Appl Energy 87:732–742CrossRefGoogle Scholar
  47. Doty SL, Shang TQ, Wilson AM, Moore AL, Newman LA, Strand SE, Gordon MP (2003) Metabolism of the soil and groundwater contaminants, ethylene dibromide and trichloroethylene, by the tropical leguminous tree, Lauceana leucocephala. Water Res 37:441–449CrossRefPubMedPubMedCentralGoogle Scholar
  48. Efe Sunday I, Ephram IE (2014) Phytoremediation of crude oil contaminated soil with Axonopus compressus in the Niger Delta Region of Nigeria. Nat Resour 5:59–67Google Scholar
  49. Elekes CC, Busuioc G (2011) The modelling of phytoremediation process for soils polluted with heavy metals. Lucrăriştiinţifice 54:133–136Google Scholar
  50. Elekes CC, Ionita G, Busuioc G (2009) The bioconversion factor of some green plants growth in the metallurgic industrial area. Ann Food Sci Technol 10:580–585Google Scholar
  51. Gawronski SW, Kutrys S, Trampczynka A (2002) Searching for wild and crop plant species useful for phytoremediation. Warsaw Agricultural University, U.L., WarsawGoogle Scholar
  52. Gerhardt KE, Gerwing PD, Greenberg BM (2017) Opinion: taking phytoremediation from proven technology to accepted practice. Plant Sci 256:170–185CrossRefPubMedPubMedCentralGoogle Scholar
  53. Gilabel AP, Nogueirol RC, Garbo AI, Monteiro FA (2014) The role of sulfur in increasing guinea grass tolerance of copper phytotoxicity. Water Air Soil Pollut 225:1806CrossRefGoogle Scholar
  54. Goswami S, Das S (2016) Copper phytoremediation potential of Calandula officinalis L. and the role of antioxidant enzymes in metal tolerance. Ecotoxicol Environ Saf 126:211–218CrossRefPubMedPubMedCentralGoogle Scholar
  55. Grispen VMJ, Nelissen HJM, Verkleij JAC (2006) Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Environ Pollut 144:77–83CrossRefPubMedPubMedCentralGoogle Scholar
  56. Gupta M, Gupta S (2017) An overview of selenium uptake, metabolism, and toxicity in plants. Front Plant Sci 7:2074CrossRefPubMedPubMedCentralGoogle Scholar
  57. Gupta SK, Prakash J, Srivastava S (2002) Validation of traditional claim of Tulsi, Ocimum sanctum Linn. As a medicinal plant. Indian J Exp Biol 40:765–773PubMedPubMedCentralGoogle Scholar
  58. Hajiboland R (2005) An evaluation of the efficiency of cultural plants to remove heavy metals from growing medium. Plant Soil Environ 51:156–164CrossRefGoogle Scholar
  59. Hamid MA (2011) Growth And heavy metals uptake by date palm grown in mono-and dual culture in heavy metals contaminated soil. World Appl Sci J 15:429–435Google Scholar
  60. Hasani-Ranjbar S, Nayebi N, Larijani B, Abdollahi M (2010) A systematic review of the efficacy and safety of Teucrium species; from anti-oxidant to anti-diabetic effect. Int J Pharmacol 6:315–325CrossRefGoogle Scholar
  61. Huang XD, El-Alawi Y, Gurska J, Glick BR, Greenberg BM (2005) A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchemical J 81:139–147CrossRefGoogle Scholar
  62. Ivancheva S, Stancheva B (2001) Ethnobotany in Bulgaria. In: Ozhatay N (ed) Plants of the Balkan peninsula: into the next millennium. Proceedings of the 2nd Balkan Botanical Congress, vol I. Istanbul, Turkey, May 14–18, pp 555–568Google Scholar
  63. Jadia CD, Fulekar MH (2009) Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol 8(6):921–928Google Scholar
  64. Jaffré T, Pillon Y, Thomine S, Merlot S (2013) The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. Front Plant Sci 4:1–7CrossRefGoogle Scholar
  65. Jaing Y, Lei M, Duan L, Longhurst P (2015) Integrated phytoremediation with biomass valorisation and critical element recovery: a UK contaminated land perspective. Biomass Bioenergy 83:328–339CrossRefGoogle Scholar
  66. January MC, Cutright TJ, Keulen HV, Wei R (2008) Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: can Helianthus annuus hyper accumulate multiple heavy metals? Chemosphere 70:531–537CrossRefPubMedPubMedCentralGoogle Scholar
  67. Jha AB, Misra AN, Sharma P (2017) Phytoremediation of heavy metal-contaminated soil using bioenergy crops. In: Bauddh K, Singh B, Korstad J (eds) Phytoremediation potential of bioenergy plants. Springer, SingaporeGoogle Scholar
  68. Jisha CK, Bauddh K, Shukla SK (2017) Phytoremediation and bioenergy production efficiency of medicinal and aromatic plants. In: Bauddh K, Singh B, Korstad J (eds) Phytoremediation potential of bioenergy plants. Springer, SingaporeGoogle Scholar
  69. Kala S (2014) Rhizoremediation: a promising rhizosphere technology. IOSR J Environ Sci Toxicol Food Technol 8(8):23–27CrossRefGoogle Scholar
  70. Kamaludeen SPB, Ramasamy K (2008) Rhizoremediation of metals: harnessing microbial communities. Indian J Microbiol 48(1):80–88CrossRefPubMedPubMedCentralGoogle Scholar
  71. Keller C, Ludwig C, Davoli F, Wocheke J (2005) Thermal treatment of metal-enriched biomass produced from heavy metal phytoextraction. Environ Sci Technol 39:3359–3367CrossRefPubMedPubMedCentralGoogle Scholar
  72. Kelly RA, Crews J, Dewitt JG (2002) An X-ray absorption spectroscopic investigation of the nature of the zinc complex accumulated in Datura innoxia plant tissue culture. Microchemical J 71:231–245CrossRefGoogle Scholar
  73. Khajanchi L, Yadava RK, Kaurb R, Bundelaa DS, Khana MI, Chaudharya M, Meenaa RL, Dara SR, Singha G (2013) Productivity, essential oil yield, and heavy metal accumulation in lemon grass (Cymbopogon flexuosus) under varied wastewater− groundwater irrigation regimes. Indian Crop Prod 45:270–278CrossRefGoogle Scholar
  74. Khandare RV, Desai SB, Bhujbal SS, Watharkar AD, Biradar SP, Pawar PK, Govindwar SP (2017) Phytoremediation of fluoride with garden ornamentals Nerium oleander, Portulaca oleracea, and Pogonatherum crinitum. Environ Sci Pollut Res Int 24(7):6833–6839CrossRefPubMedPubMedCentralGoogle Scholar
  75. Khokhar AL, Rajput MT, Ahmed B, Tahir SS (2012) Checklist of flowering plants used in phytoremediation found in Sindh, Pakistan. Sindh Univ Resour J 44:497–500Google Scholar
  76. Klaber NS, Barker AV (2014) Accumulation of phosphorus and arsenic in two perennial grasses for soil remediation. Commun Soil Sci Plant Anal 45:810–818CrossRefGoogle Scholar
  77. Komárek M, Tlustoš P, Száková J, Chrastný J, Ettler V (2007) The use of maize and poplar in chelant enhanced phytoextraction of lead from contaminated agricultural soil. Chemosphere 67:640–651CrossRefPubMedPubMedCentralGoogle Scholar
  78. Kos B, Grčman H, Leštan D (2003) Phytoextraction of lead, zinc and cadmium from soil by selected plants. Plant Soil Environ 49:548–553CrossRefGoogle Scholar
  79. Kuiper EL, Lagendijk GV, Lugtenberg B (2004) Rhizoremediation: a beneficial plant microbe interaction. Mol Plant Microbiol Interact 17:6–15CrossRefGoogle Scholar
  80. Kumar NJI, Soni H, Kumar RN (2007) Characterization of heavy metals in vegetables using inductive coupled plasma analyzer (ICPA). J Appl Sci Environ Manag 11:75–79Google Scholar
  81. Kumar NJI, Soni H, Kumar RN, Bhatt I (2009) Hyper accumulation and mobility of heavy metals in vegetable crops. Indian J Agr Environ 10:29–38Google Scholar
  82. Kumar D, Sing B, Sharma YC (2017) Bioenergy and phytoremediation potential of Millettia pinnata. In: Bauddh K, Singh B, Korstad J (eds) Phytoremediation potential of bioenergy plants. Springer, SingaporeGoogle Scholar
  83. Lefevre I, Marchal G, Ghanem ME, Correal E, Lutts S (2010) Cadmium has contrasting effects on polyethylene glycol-sensitive and resistant cell lines in the Mediterranean halophytes species Atriplex halimus. J Plant Physiol 167:365–374CrossRefPubMedPubMedCentralGoogle Scholar
  84. Li H, Sheng G, Sheng W, Xu O (2002) Uptake of trifluralin and lindane from water by ryegrass. Chemosphere 48:335–341CrossRefPubMedPubMedCentralGoogle Scholar
  85. Li H, Wang Q, Cui Y, Dong Y, Christie P (2005) Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil – a preliminary study. Sci Total Environ 339:179–187CrossRefPubMedPubMedCentralGoogle Scholar
  86. Linger P, Müssig J, Fischer H, Kobert J (2002) Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential. Indian Crops Prod 16:33–42CrossRefGoogle Scholar
  87. Liu XM, Wu QT, Banks MK (2005) Effect of simultaneous establishment of Sedum alfridii and Zea mays on heavy metal accumulation in plants. Int J Phytoremediation 7:43–53CrossRefPubMedPubMedCentralGoogle Scholar
  88. Liu JN, Zhou QX, Suna T, Mad LQ, Wang S (2008) Growth responses of three ornamental plants to Cd and Cd–Pb stress and their metal accumulation characteristics. J Hazard Mater 151:261–267CrossRefPubMedPubMedCentralGoogle Scholar
  89. Liu JN, Zhou QX, Wang SS (2010) Evaluation of chemical enhancement on phytoremediation effect of Cd-contaminated Soils with Calendula Officinalis L. Int J Phytoremediation 12:503–515CrossRefGoogle Scholar
  90. Liu R, Jadeja RN, Zhou Q, Liu Z (2012) Treatment and remediation of petroleum-contaminated soils using selective ornamental plants. Environ Eng Sci 29:494–501CrossRefPubMedPubMedCentralGoogle Scholar
  91. Liu Z, He X, Chen W, Zha M (2013) Eco toxicological responses of three ornamental herb species to cadmium. Environ Toxicol Chem 32:8Google Scholar
  92. Madejon P, Murillo JM, Maranon T, Cabera F, Lopez R (2002) Bioaccumulation of As, Cd, Cu, Fe and Pb in wild grasses affected by Aznal collar mine spill (SW Spain). Sci Total Environ 290:105–120CrossRefGoogle Scholar
  93. Mahar A, Wang P, Ali A, Awasthi MK, Lahori AF, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121CrossRefGoogle Scholar
  94. Mahmud S, Hassan MM, Moniruzzaman M, Biswas N, Rahman MM, Haque ME (2013) Study on the accumulation of copper from soil by shoots and roots of some selective plant species. Int J Biosci 3(6):68–75CrossRefGoogle Scholar
  95. Marchiol L, Assolari S, Sacco P, Zerbi G (2004) Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multi contaminated soil. Environ Pollut 132:21–27CrossRefGoogle Scholar
  96. Marquard R, Schneider M (1998) Zur Cadmium problem atikim Arzneipflanzenanbau. In: Marquard R, Schubert E (eds) Fachtagung Arznei- und Gewu¨rzpflanzen. Justus-Liebig-Universita¨t, Gießen, pp 9–15Google Scholar
  97. Marques MC, Araújo do Nascimento CW (2013) Analysis of chlorophyll fluorescence spectra for the monitoring of Cd toxicity in a bio-energy crop (Jatropha curcas). J Photochem Photobiol 127:88–93CrossRefGoogle Scholar
  98. Martin BC, George SJ, Price CA, Ryan MH, Tibbett M (2014) The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: current knowledge and future directions. Sci Total Environ 472:642–653CrossRefGoogle Scholar
  99. Matsui K, Togami J, Mason JG, Chandler SF, Tanaka Y (2013) Enhancement of phosphate absorption by garden plants by genetic engineering: a new tool for phytoremediation. Biomed Res Int 2013:7CrossRefGoogle Scholar
  100. McCutcheon S, Schnoor JL (2004) Phytoremediation transformation and control of contaminants. Environ Sci Pollut Res 11(1):40CrossRefGoogle Scholar
  101. McGrath SP, Zhao F (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282CrossRefPubMedPubMedCentralGoogle Scholar
  102. McIntyre T (2003) Phytoremediation of heavy metals from soils. Adv Biochem Eng Biotechnol 78:97–123PubMedPubMedCentralGoogle Scholar
  103. Mendes MG, Santos CD Jr, Dias AC, Bonetti AM (2015) Castor bean (Ricinus communis L.) as a potential environmental bio indicator. Genet Mol Res 21:12880–12887CrossRefGoogle Scholar
  104. Miao Q, Yan J (2013) Comparison of three ornamental plants for phytoextraction potential of chromium removal from tannery sludge. J Mater Cycle Waste Manag 15:98–105CrossRefGoogle Scholar
  105. Milic D, Lukovic J, Ninkov J (2012) Heavy metal content in halophytic plants from inland and maritime saline areas. Cent Eur J Biol 7:307–317Google Scholar
  106. Mitton FM, Gonzalez M, Monserrat JM, Miglioranza KS (2016) Potential use of edible crops in the phytoremediation of endosulfan residues in soil. Chemosphere 148:300–306CrossRefPubMedGoogle Scholar
  107. Mohanty M, Patra HK (2012) Phytoremediation potential of Paragrassan in situ approach for chromium contaminated soil. Int J Phytoremediation 14:796–805CrossRefPubMedGoogle Scholar
  108. Mokhtar H, Morad N, Fizri FFA (2011) Hyperaccumulation of Copper by two species of aquatic plants. In: International conference on environmental science and engineering IACSIT Press, Singapore, 8, pp 115–118Google Scholar
  109. Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the clean-up of heavy metals and metalloids. Front Plant Sci 7:303CrossRefPubMedPubMedCentralGoogle Scholar
  110. Moursy AA, Aziz HA, Mostafa AZ (2014) The effect of irradiated and non-irradiated sewage sludge application on uptake of heavy metals by Jatropha curcas L plants. Int J Adv Res 2(1):1072–1080Google Scholar
  111. Mukherjee P, Roychowdhury R, Roy M (2017) Phytoremediation potential of rhizobacterial isolates from Kans grass (Saccharum spontaneum) of fly ash ponds. Clean Techn Environ Policy.  https://doi.org/10.1007/s10098-017-1336-y
  112. Murakami M, Ae N (2009) Potential for phytoextraction of copper, lead, and zinc by rice (Oryza sativa L.), soybean (Glycine max [L.] Merr.) and maize (Zea mays L.). J Hazard Mater 162:1185–1192CrossRefPubMedPubMedCentralGoogle Scholar
  113. Muthunarayanan V, Santhiya M, Swabna V, Geetha A (2011) Phytoremediation of textile dyes by Water Hyacinth (Eichhornia crassipes) from aqueous dye solutions. Int J Environ Sci 1(7):1702–1717Google Scholar
  114. Nazir A, Malik RN, Ajaib M, Khan N, Siddiqui MF (2011) Hyperaccumulators of heavy metals of industrial areas of Islamabad and Rawalpindi. Pak J Bot 43:1925–1933Google Scholar
  115. Nchez ST, Martın S, Saco D (2014) Some responses of two Nicotiana tabacum L. cultivars exposed to vanadium. J Plant Nutr 37:777–784CrossRefGoogle Scholar
  116. Nelson DM (2016) Heavy metal accumulation in urban soil: a phytoextraction method review. Open access master’s report, Michigan Technological UniversityGoogle Scholar
  117. Nikolov S (2006) Encyclopaedia of medicinal plants in Bulgaria. Publishing House Trud, Sofia, p 566Google Scholar
  118. Nouairi I, Ammar WB, Youssef NB, Daoud DBM, Ghorbal MH, Zarrouk M (2006) Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci 170:511–519CrossRefGoogle Scholar
  119. Nwaichi EO, Dhankher OP (2016) Heavy metal contaminated environments and the road map with phytoremediation. J Environ Protect 7:41–51CrossRefGoogle Scholar
  120. Obratov-Petkovic D, Bjedov I, Belanovic S (2008) The relationship between heavy metal contents and bedrock in some species of genus Teucrium L, in Serbia. In: Ruzichkova G (ed) Proceedings of the 5th conference on medicinal and aromatic plants of southeast European countries, September 2–5. Mendel University of Agriculture and Forestry, Brno, pp 1–5Google Scholar
  121. Oh K, Cao T, Li T, Cheng H (2011) Study on application of phytoremediation technology in management and remediation of contaminated soils. J Clean Energy Technol 2(3):216–220Google Scholar
  122. Olatunji OS, Ximba BJ, Fatoki OS, Opeolu BO (2014) Assessment of the phytoremediation potential of Panicum maximum (guinea grass) for selected heavy metal removal from contaminated soils. Afr J Biotechnol 13(19):1979–1984CrossRefGoogle Scholar
  123. Pandey VC, Bajpai O, Singh N (2016) Energy crops in sustainable phytoremediation. Renew Sustain Energy Rev 54:58–73CrossRefGoogle Scholar
  124. Paz-Alberto A, Sigua G (2013) Phytoremediation: a green technology to remove environmental pollution. Am J Clim Chang 2:71–86CrossRefGoogle Scholar
  125. Pichtel J, Salt CA (1998) Vegetative growth and trace metal accumulation on metalliferous wastes. J Environ Qual 27:618–624CrossRefGoogle Scholar
  126. Prasad MNV (2003) Metal hyper accumulation in plants - Biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6(3):0717–3458CrossRefGoogle Scholar
  127. Prasad A, Singh KA, Chand S, Hand CSC, Patra DD (2010) Effect of chromium and lead on yield, chemical composition of essential oil, and accumulation of heavy metals of mint species. Commun Soil Sci Plant Anal 41:2170–2186CrossRefGoogle Scholar
  128. Prins CN, Hantzis LJ, Quinn CF, Pilon Smits EAH (2011) Effects of selenium accumulation on reproductive functions in Brassica juncea and Stanleya pinnata. J Exp Bot 62:5633–5640CrossRefPubMedPubMedCentralGoogle Scholar
  129. Przybylowics WJ, Pineda CA, Prozesky VM, Mesjasz-przybylowicz J (1995) Investigation of Ni hyper accumulation by true elemental imaging. Beam Interact Mater Atom 104:176–181Google Scholar
  130. Raquel A. Sá, Renata A. Sá, Alberton O, Gazim ZC, Laverde A Jr, Caetano J, Amorin AC, Dragunski DC (2014) Phytoaccumulation and effect of lead on yield and chemical composition of essential oil. Desalin Water Treat 53(11):3007–3017Google Scholar
  131. Rahman M, Reichman S, de Filippis L, Sany S, Hasegawa H (2016) Phytoremediation of toxic metals in soils and wetlands: concepts and applications. In: Hasegawa H et al (eds) Environmental remediation technologies for metal-contaminated soils. Springer, Tokyo, pp 161–195CrossRefGoogle Scholar
  132. Rangnekar SS, Sahu SK, Pandit GG, Gaikwad VB (2013) Study of uptake of Pb and Cd by three nutritionally important Indian vegetables grown in artificially contaminated soils of Mumbai. Indian Res J Agric For Sci 2:53–59Google Scholar
  133. Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, p 304Google Scholar
  134. Razzaq R (2017) Phytoremediation: an environmental friendly technique – a review. J Environ Anal Chem 4(2):2380–2391CrossRefGoogle Scholar
  135. Redzic S (2010) Wild medicinal plants and their usage in traditional human therapy (Southern Bosnia and Herzegovina, W. Balkan). J Med Plants Res 4:1003–1027Google Scholar
  136. Reed ST, Ayala-Silva T, Dunn CB, Gordon GG, Meerow A (2013) Screening ornamentals for their potential as as accumulator plants. J Agric Sci 5:10Google Scholar
  137. Robinson BH, Nerson CW, Dickinson NM (2015) Phytoextraction: where’s the action? J Geochem Explor 151:34–40CrossRefGoogle Scholar
  138. Rodriquez-Vazquez R, Sanchez S, Mena-Espino X, Amezcua-Allieri MA (2016) Identification of the medicinal plant species with the potential for remediation of hydrocarbons contaminated soils. Physiol Plant 38(1):10Google Scholar
  139. Rosselli W, Keller C, Boschi K (2003) Phytoextraction capacity of trees growing on a metal contaminated soil. Plant Soil 256:265–272CrossRefGoogle Scholar
  140. Russell L (2005) The use and effectiveness of phytoremediation to treat persistent organic pollutant. US Environmental Protection Agency, Washington, DC, pp 1–44Google Scholar
  141. Sainger M, Sharma A, Bauddh K, Sainger PA, Singh R (2014) Remediation of Nickel- contaminated soil by Brassica juncea L. cv. T-59 and effect of the metal on some metabolic aspects of plants. Biorem J 8:100–110CrossRefGoogle Scholar
  142. Salvatore MD, Carafa AM, Mingo A, Carratù G (2012) Evaluation of heavy metal toxicity on radish: comparison between soil and floating hydroponics systems. Am J Exp Agric 2(2):174–185CrossRefGoogle Scholar
  143. Sánchez V, López-Bellido FJ, Cañizares P, Rodríguez L (2017) Assessing the phytoremediation potential of crop and grass plants for atrazine-spiked soils. Chemosphere 185:119–126CrossRefPubMedPubMedCentralGoogle Scholar
  144. Schiavon M, Dall’acqua S, Mietto A, Pilon-Smits EAH, Sambo P, Masi A et al (2013) Selenium fertilization alters the chemical composition and antioxidant constituents of tomato (Solanum lycopersicon L.). J Agric Food Chem 61:10542–10554CrossRefPubMedPubMedCentralGoogle Scholar
  145. Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042CrossRefPubMedPubMedCentralGoogle Scholar
  146. Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170CrossRefPubMedPubMedCentralGoogle Scholar
  147. Sheoran V, Sheoran A, Poonia P (2011) Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Environ Sci Technol 41:168–214CrossRefGoogle Scholar
  148. Shi G, Cai Q (2009) Cadmium tolerance and accumulation in eight potential energy crops. Biotechnol Adv 27:555–561CrossRefPubMedPubMedCentralGoogle Scholar
  149. Siddiqui F, Krishna KS, Tandon PK, Srivastava S (2013) Arsenic accumulation in Ocimum spp. and its effect on growth and oil constituents. Acta Physiol Plant 35:1071–1079CrossRefGoogle Scholar
  150. Signes-Pastor AJ, Munera-Picazo S, Burlo F, Cano-Lamadrid M, Carbonell-Barrachina AA (2015) Phytoremediation assessment of Gomphrena globosa and Zinnia elegans grown in arsenic-contaminated hydroponic conditions as a safe and feasible alternative to be applied in arsenic-contaminated soils of the Bengal Delta. Environ Monit Assess 187(6):387CrossRefPubMedPubMedCentralGoogle Scholar
  151. Sivakumar P, Kanagappan M, Das SSM (2016) Phytoremediation of tannery waste polluted soil using Hyptis suaveolens (Lamiaceae). Int J Pure Appl Biosci 4(1):265–272CrossRefGoogle Scholar
  152. Smith E, Naidu R, Alston AM (1998) Arsenic in the soil environment: a review. Adv Agron 64:149–195CrossRefGoogle Scholar
  153. Smykalova I, Vrbova M, Tejklova E, Vetrovcova M, Griga M (2010) Large scale screening of heavy metal tolerance in flax/linseed (Linum usitatissimum L.) tested in vitro. Indian Crops Prod 32:527–533CrossRefGoogle Scholar
  154. Soleimani M, Hajabbasi MA, Afyuni M, Charkhabi AH, Shariatmadari H (2009) Bioaccumulation of nickel and lead by Bermuda grass (Cynodon dactylon) and Tall fescue (Festuca arundinacea) from two contaminated soils. Caspian J Environ Sci 7:59–70Google Scholar
  155. Soudek P, Katrušáková A, Sedláček L, Petrová S, Kočí V, Maršík P, Griga M, Vaněk T (2010) Effect of heavy metals on inhibition of root elongation in 23 cultivars of flax (Linum usitatissimum L.). Arch Environ Contam Toxicol 59:194–203CrossRefPubMedPubMedCentralGoogle Scholar
  156. Soudek P, Petrová S, Vaněk T (2012) Phytostabilization or accumulation of heavy metals by using of energy crop sorghum, 3rd Int Conference on Biology, Environment and Chemistry IPCBEE, vol 46. IACSIT Press, SingaporeGoogle Scholar
  157. Spaczyński M, Seta-Koselska A, Patrzylas P, Betlej A, Skórzyńska-Polit E (2012) Phytodegradation and biodegradation in rhizosphere as efficient methods of reclamation of soil contaminated by organic chemicals (a review). Acta Agrophysica 19(1):155–169Google Scholar
  158. Stefanović M, Curcić M, Zizić J, Topuzović M, Solujić S, Marković S (2011) Teucrium plant species as natural sources of novel anticancer compounds: antiproliferative, proapoptotic and antioxidant properties. Int J Mol Sci 12:4190–4205CrossRefGoogle Scholar
  159. Suelee AL, Syed Hasan SNM, Kusin FM et al (2017) Phytoremediation potential of vetiver grass (Vetiveria zizanioides) for treatment of metal-contaminated water. Water Air Soil Pollut:228–158Google Scholar
  160. Sun Y, Zhou Q (2016) Uptake and translocation of benzo[a]pyrene (B[a] P) in two ornamental plants and dissipation in soil. Ecotoxicol Environ Saf 124:74–81CrossRefPubMedPubMedCentralGoogle Scholar
  161. Sun YB, Zhou QX, Diao CY (2008) Effects of cadmium and arsenic on growth and metal accumulation of Cd hyperaccumulator Solanum nigrum L. Bioresour Technol 99:1103–1110CrossRefPubMedPubMedCentralGoogle Scholar
  162. Szczygłowska M, Piekarska A, Konieczka P, Namiesnik J (2011) Use of Brassica plants in the phytoremediation and bio fumigation processes. Int J Mol Sci 12:7760–7771CrossRefPubMedPubMedCentralGoogle Scholar
  163. Thayalakumaran T, Robinson BH, Vogeler I, Scotter DR, Clothier BE, Percival HJ (2003) Plant uptake and leaching of copper during EDTA-enhanced phytoremediation of repacked and undisturbed soil. Plant Soil 254:415–423CrossRefGoogle Scholar
  164. Thomas C, Butler A, Larson S, Medina V, Begonia M (2014) Complexation of lead by bermuda grass root exudates in aqueous media. Int J Phytoremediation 16:634–640CrossRefPubMedPubMedCentralGoogle Scholar
  165. Tiwari J, Kumar A, Kumar N (2017) Phytoremediation potential of industrially important and biofuel plants: Azadirachta indica and Acacia nilotica. In: Bauddh K, Singh B, Korstad J (eds) Phytoremediation potential of bioenergy plants. Springer, SingaporeGoogle Scholar
  166. Turgut C, Pepe MK, Cutright TJ (2004) The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ Pollut 131:147–154CrossRefPubMedPubMedCentralGoogle Scholar
  167. United States Protection Agency (USEPA) (2000) Introduction to phytoremediation. EPA 600/R-99/107. U.S. Environmental Protection Agency. Office of Res Development, CincinnatiGoogle Scholar
  168. Vargas C, Perez-Esteban J, Escolastico C, Masaguer A, Moliner A (2016) Phytoremediation of Cu and Zn by vetiver grass in mine soils amended with humic acids. Environ Sci Pollut Res 23(13):13521–13530CrossRefGoogle Scholar
  169. Vergani L, Mapelli F, Zanardini E, Terzaghi E, Di Guardo A, Morosini C, Raspa G, Borin S (2017) Phyto-rhizoremediation of polychlorinated biphenyl contaminated soils: An outlook on plant-microbe beneficial interactions. Sci Total Environ 575:1395–1406CrossRefPubMedPubMedCentralGoogle Scholar
  170. Vrbová M, Kotrba P, Horáček J, Smýkal P, Švábová L, Větrovcová M, Smýkalová I, Griga M (2013) Enhanced accumulation of cadmium in Linum usitatissimum L. plants due to overproduction of metallothionein α-domain as a fusion to β-glucuronidase protein. Plant Cell Tissue Organ Cult 112:321–330CrossRefGoogle Scholar
  171. Vysloužilová M, Tlustoš P, Száková J (2011) Cadmium and zinc phytoextraction potential of seven clones of Salix spp. planted on heavy metal contaminated soils. Plant Soil Environ 49(12):542–547Google Scholar
  172. Wang C, Lyon DY, Hughes JB, Bennett GN (2003) Role of hydroxylamine intermediates in the phytotransformation of 2, 4, 6-trinitrotoluene by Myriophyllum aquaticum. Environ Sci Technol 37:3595–3600CrossRefPubMedPubMedCentralGoogle Scholar
  173. Wang Y, Yan A, Dai J, Wang N, Wu D (2012) Accumulation and tolerance characteristics of cadmium in Chlorophytum comosum: a popular ornamental plant and potential Cd hyperaccumulator. Environ Monit Assess 184:929–937CrossRefPubMedPubMedCentralGoogle Scholar
  174. Wu LH, Luo YM, Xing XR, Christie P (2004) ED TA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agric Ecosyst Environ 102:307–318CrossRefGoogle Scholar
  175. Wu FZ, Yang WQ, Zhang J, Zhou LQ (2011a) Growth responses and metal accumulation in an ornamental plant (Osmanthus fragrans var. thunbergii) submitted to different Cd levels. ISRN Ecol 2011:738138 International Scholarly Research Network, 7 pGoogle Scholar
  176. Wu Q, Wang S, Thangavel P, Li Q, Zheng H, Bai J, Qiu R (2011b) Phytostabilization potential of Jatropha curcas L. in polymetallic acid mine tailings. Int J Phytoremediation 13:788–804CrossRefGoogle Scholar
  177. Wu Z, Mc Grouther K, Chen D, Wu W, Wang H (2013) Subcellular distribution of metals within Brassica chinensis L. in response to elevated lead and chromium stress. J Agric Food Chem 61:4715–4722CrossRefGoogle Scholar
  178. Wu C, Zhang X, Deng Y (2017) Review in strengthening technology for phytoremediation of soil contaminated by heavy metals. IOP Conf Ser: Earth Environ Sci 78:012015CrossRefGoogle Scholar
  179. Xu P, Wang Z (2014) A comparison study in cadmium tolerance and accumulation in two cool-season turfgrasses and Solanum nigrum L. Water Air Soil Pollut 225:1–9Google Scholar
  180. Yadav SK, Dhote M, Kumar P, Sharma J, Chakrabarti T, Juwarkar AA (2010) Differential antioxidative enzyme responses of Jatropha curcas L. to chromium stress. J Hazard Matter 180:609–615CrossRefGoogle Scholar
  181. Yang Y, Jiang RF, Wang W, Li HF (2011) Application of rhizosphere interaction of hyperaccumulator Noccaea caerulescens to remediate cadmium-contaminated agricultural soil. Int J Phytoremediation 13(9):933–945CrossRefPubMedPubMedCentralGoogle Scholar
  182. Yasin M, El-Mehdawi AF, Anwar A, Pilon-Smits EAH, Faisal M (2015) Microbial-enhanced selenium and iron biofortification of wheat (Triticum aestivum L.) – applications in phytoremediation and biofortification. Int J Phytoremediation 17:341–347CrossRefPubMedPubMedCentralGoogle Scholar
  183. Zheljazkov VD, Craker LE, Baoshan X (2006) Effects of Cd, Pb and Cu on growth and essential oil contents in dill pepper mint, and basil. Environ Exp Bot 58:9–16CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Resham Sharma
    • 1
  • Renu Bhardwaj
    • 1
  • Vandana Gautam
    • 1
  • Shagun Bali
    • 1
  • Ravdeep Kaur
    • 1
  • Parminder Kaur
    • 1
  • Manik Sharma
    • 1
  • Vinod Kumar
    • 1
  • Anket Sharma
    • 1
  • Sonia
    • 1
  • Ashwani Kumar Thukral
    • 1
  • Adarsh Pal Vig
    • 1
  • Puja Ohri
    • 1
  1. 1.Department of Botanical and Environmental SciencesGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations