Advertisement

Geophysical Application for Splines

  • Dhananjay Singh
  • Madhusudan Singh
  • Zaynidinov Hakimjon
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

This chapter discussed the application of splines. It has mentioned the use of developed algorithms and software for processing of geophysical signals. It showed and discussed the splines’ simulations of approximation of function y = sin(πx) at interval by parabolic basic splines on a three-points formula and record of a geophysical signal, obtained during aero-magnetic sounding studies, and also provided the generation of electromagnetic and acoustic emissions method. It has also mentioned an approximation of geophysical studies’ data using parabolic B-splines on the three-points formula.

References

  1. 1.
    R. Silva-Ortigoza, C. Márquez-Sánchez, M. Marcelino-Aranda, M. Marciano-Melchor, G. Silva-Ortigoza, R. Bautista-Quintero, E.R. Ramos-Silvestre, J.C. Rivera-Díaz, D. Muñoz-Carrillo, Sci. World J. 2013(723645), 17 (2013). http://dx.doi.org/10.1155/2013/723645
  2. 2.
    J. Liu, H. Guo, Y.-L. Jiang, Y. Wang, High order numerical algorithms based on biquadratic spline collocation for two-dimensional parabolic partial differential equations. Int. J. Comput. Math. (2018).  https://doi.org/10.1080/00207160.2018.1437260
  3. 3.
    D. Singh, H. Zaynidinov, H.-J. Lee, Piecewise-quadratic Hartmuth basis functions and their application to problems in digital signal processing, Special Issue: Next Generation Networks (NGNs). Int. J. Commun. Syst. 23(6–7), 751–762. (2010).  https://doi.org/10.1002/dac.1093
  4. 4.
    F. Liao, L. Zhang, S. Wang, Numerical analysis of cubic orthogonal spline collocation methods for the coupled Schrödinger-Boussinesq equations. Appl. Numer. Math. 119, 194–212 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    H.P. Quach, T.C.P. Chui, Low temperature magnetic properties of Metglas 2714A and its potential use as core material for EMI filters. Cryogenics 44(6–8), 445–449, ISSN 0011-2275 (2004).  https://doi.org/10.1016/j.cryogenics.2004.01.006CrossRefGoogle Scholar
  6. 6.
    G. Yi, J. Wang, K.-M. Tsang, X. Wei, B. Deng, C. Han, Spike-frequency adaption of a two-compartment neuron modulated by extracellular electric fields. Biol. Cybern. 109(3), 287–306 (2015).  https://doi.org/10.1007/s00422-014-0642-2CrossRefzbMATHGoogle Scholar
  7. 7.
    H. Paasche et al.: MuSaWa: multi-scale S-wave tomography for exploration and risk assessment of development sites. Adv. Technol. Earth Sci. 95–114 (2014).  https://doi.org/10.1007/978-3-319-04205-3_6Google Scholar
  8. 8.
    J. Tang, H. Cheng, L. Liu, Using nonlinear programming to correct leakage and estimate mass change from GRACE observation and its application to Antartica. J. Geophys. Res.: Solid Earth banner 117(B11), 148–227 (2012).  https://doi.org/10.1029/2012JB009480CrossRefGoogle Scholar
  9. 9.
    E. Quirós, Á.M. Felicísimo, A. Cuartero, Testing Multivariate Adaptive Regression Splines (MARS) as a method of land cover classification of Terra-Aster satellite images. Sensors 9(11), 9011–9028 (2009).  https://doi.org/10.3390/s91109011CrossRefGoogle Scholar
  10. 10.
    A. Carrassi, S. Vannitsem, State and parameter estimation with the extended Kalman filter: an alternative formulation of the model error dynamics. Q. J. R. Meteorol. Soc. 137(655), 435–451 (2011).  https://doi.org/10.1002/qj.762CrossRefGoogle Scholar
  11. 11.
    M.M. Khader, A new fractional Chebyshev FDM: an application for solving the fractional differential equations generated by optimisation problem. Int. J. Syst. Sci. 46(14), 2598–2606 (2015).  https://doi.org/10.1080/00207721.2013.874508MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    A. Eicker, T. Mayer-Gürr, K.-H. Ilk, E. Kurtenbach, in Regionally Refined Gravity Field Models from In-Situ Satellite Data. System Earth via Geodetic-Geophysical Space Techniques (Springer, 2010), pp. 255–264.  https://doi.org/10.1007/978-3-642-10228-8_20Google Scholar
  13. 13.
    X. Yang, H. Zhang, D. Xu, WSGD-OSC scheme for two-dimensional distributed order fractional reaction-diffusion equation. J. Sci. Comput. 76(3), 1502–1520 (2018).  https://doi.org/10.1007/s10915-018-0672-3MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    H. Zhang, X. Yang, The BDF orthogonal spline collocation method for the two-dimensional evolution equation with memory. Int. J. Comput. Math. 95(10), 2011–2025 (2018).  https://doi.org/10.1080/00207160.2017.1347259MathSciNetCrossRefGoogle Scholar
  15. 15.
    H. Chen, C. Zhang, Convergence and stability of extended block boundary value methods for Volterra delay integro-differential equations. Appl. Numer. Math. 62(2), 141–154, ISSN 0168-9274 (2012).  https://doi.org/10.1016/j.apnum.2011.11.001MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Dhananjay Singh
    • 1
  • Madhusudan Singh
    • 2
  • Zaynidinov Hakimjon
    • 3
  1. 1.Department of Electronics EngineeringHankuk University of Foreign Studies (Global Campus)YonginKorea (Republic of)
  2. 2.School of Technology Studies, Endicott College of International StudiesWoosong UniversityDaejeonKorea (Republic of)
  3. 3.Head of Department of Information TechnologiesTashkent University of Information TechnologiesTashkentUzbekistan

Personalised recommendations