Advertisement

Cartesian Sliding Mode Control of an Upper Extremity Exoskeleton Robot for Rehabilitation

  • Brahim BrahmiEmail author
  • Maarouf Saad
  • Cristobal Ochoa-Luna
  • Mohammad H. Rahman
  • Abdelkrim Brahmi
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 175)

Abstract

Rehabilitation robots play an important role in rehabilitation treatment. Unlike conventional rehabilitation approach, the rehabilitation robotics provides an intensive rehabilitation motion with different modes (passive, active and active-assisted) based on the ability of the exoskeleton robot to perform assistive motion for a long period. However, this technology is still an emerging field. In this chapter, we present a Cartesian adaptive control based on a robust proportional sliding mode combined with time delay estimation for controlling a redundant exoskeleton robot called ETS-MARSE subject to uncertain nonlinear dynamics and external forces. The main objective of this research is to allow the exoskeleton robot to perform both rehabilitation modes, passive and active assistive motions with real subjects. The stability of the closed loop system is solved systematically, ensuring asymptotic convergence of the output tracking errors. Experimental results confirm the efficiency of the proposed control to provide an excellent performance despite the presence of dynamic uncertainties and external disturbances.

Keywords

Rehabilitation robots Adaptive control Time delay estimation Active and passive motion 

References

  1. Baek, J., Jin, M., & Han, S. (2016). A new adaptive sliding-mode control scheme for application to robot manipulators. IEEE Transactions on Industrial Electronics, 63(6), 3628–3637.CrossRefGoogle Scholar
  2. Brahim, B., Maarouf, S., Luna, C. O., Abdelkrim, B., & Rahman, M. (2016a). Adaptive iterative observer based on integral backstepping control for upper extremity exoskelton robot. In 8th International Conference on Modelling, Identification and Control (ICMIC) (pp. 886–891). Piscataway: IEEE.Google Scholar
  3. Brahim, B., Rahman, M. H., Saad, M., & Luna, C. O. (2016b). Iterative estimator-based nonlinear backstepping control of a robotic exoskeleton. World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 10(8), 1313–1319.Google Scholar
  4. Brahmi, B., Saad, M., Lam, J. T. A. T., Luna, C. O., Archambault, P. S., & Rahman, M. H. (2018a). Adaptive control of a 7-DOF exoskeleton robot with uncertainties on kinematics and dynamics. European Journal of Control, 42, 77–87.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Brahmi, B., Saad, M., Luna, C. O., Rahman, M. H., & Brahmi, A. (2018b). Adaptive tracking control of an exoskeleton robot with uncertain dynamics based on estimated time delay control. IEEE/ASME Transactions on Mechatronics, 23, 575–585.CrossRefGoogle Scholar
  6. Chen, P., Chen, C.-W., & Chiang, W.-L. (2009). GA-based modified adaptive fuzzy sliding mode controller for nonlinear systems. Expert Systems with Applications, 36(3), 5872–5879.CrossRefGoogle Scholar
  7. Craig, J. J. (2005). Introduction to robotics: Mechanics and control. Upper Saddle River: Pearson/Prentice Hall.Google Scholar
  8. De Morand, A. (2014). Pratique de la rééducation neurologique. Issy-les-Moulineaux: Elsevier Masson.Google Scholar
  9. Fridman, L. (1999). The problem of chattering: An averaging approach. In Variable structure systems, sliding mode and nonlinear control (pp. 363–386). London: Springer.CrossRefGoogle Scholar
  10. Khalil, H. K., & Grizzle, J. (1996). Nonlinear systems. New Jersey: Prentice Hall.Google Scholar
  11. Khan, A. M., Yun, D.-W., Ali, M. A., Zuhaib, K. M., Yuan, C., & Iqbal, J. (2016). Passivity based adaptive control for upper extremity assist exoskeleton. International Journal of Control, Automation and Systems, 14(1), 291–300.CrossRefGoogle Scholar
  12. Lewis, F. L., Dawson, D. M., & Abdallah, C. T. (2003). Robot manipulator control: Theory and practice. Boca Raton: CRC Press.CrossRefGoogle Scholar
  13. Nakamura, Y., & Hanafusa, H. (1986). Inverse kinematic solutions with singularity robustness for robot manipulator control. Journal of Dynamic Systems, Measurement, and Control, 108(3), 163–171.zbMATHCrossRefGoogle Scholar
  14. Ochoa-Luna, C., Habibur Rahman, M., Saad, M., Archambault, P. S., & Bruce Ferrer, S. (2015). Admittance-based upper limb robotic active and active-assistive movements. International Journal of Advanced Robotic Systems, 12(9), 117.CrossRefGoogle Scholar
  15. Park, C.-W., & Cho, Y.-W. (2007). Robust fuzzy feedback linearisation controllers for Takagi-Sugeno fuzzy models with parametric uncertainties. IET Control Theory & Applications, 1(5), 1242–1254.MathSciNetCrossRefGoogle Scholar
  16. Rahman, M. H., Saad, M., Kenné, J.-P., & Archambault, P. S. (2013). Control of an exoskeleton robot arm with sliding mode exponential reaching law. International Journal of Control, Automation and Systems, 11(1), 92–104.CrossRefGoogle Scholar
  17. Rahman, M. H., Rahman, M. J., Cristobal, O., Saad, M., Kenné, J.-P., & Archambault, P. S. (2015). Development of a whole arm wearable robotic exoskeleton for rehabilitation and to assist upper limb movements. Robotica, 33(1), 19–39.CrossRefGoogle Scholar
  18. Reyes-Sierra, M., & Coello, C. A. C. (2005). A study of fitness inheritance and approximation techniques for multi-objective particle swarm optimization. In IEEE Congress on Evolutionary Computation, Edinburgh (pp. 65–72).Google Scholar
  19. Shieh, H.-J., & Hsu, C.-H. (2008). An adaptive approximator-based backstepping control approach for piezoactuator-driven stages. IEEE Transactions on Industrial Electronics, 55(4), 1729–1738.CrossRefGoogle Scholar
  20. Slotine, J.-J. E., & Li, W. (1991). Applied nonlinear control. Englewood Cliffs: Prentice-Hall.zbMATHGoogle Scholar
  21. Wampler, C. W. (1986). Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods. IEEE Transactions on Systems, Man, and Cybernetics, 16(1), 93–101.zbMATHCrossRefGoogle Scholar
  22. Wang, L., Chai, T., & Zhai, L. (2009). Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Transactions on Industrial Electronics, 56(9), 3296–3304.CrossRefGoogle Scholar
  23. Xie, S. (2016). Advanced robotics for medical rehabilitation. Cham: Springer.CrossRefGoogle Scholar
  24. Yim, J., & Park, J. H. (1999). Nonlinear H control of robotic manipulator. In Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, SMC’99. Proceedings 1999 (pp. 866–871). Piscataway: IEEE.Google Scholar
  25. Youcef-Toumi, K., & Ito, O. (1990). A time delay controller for systems with unknown dynamics. Journal of Dynamic Systems, Measurement, and Control, 112(1), 133–142.zbMATHCrossRefGoogle Scholar
  26. Young, K. D., Utkin, V. I., & Ozguner, U. (1999). A control engineer’s guide to sliding mode control. IEEE Transactions on Control Systems Technology, 7(3), 328–342.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Brahim Brahmi
    • 1
    Email author
  • Maarouf Saad
    • 1
  • Cristobal Ochoa-Luna
    • 2
  • Mohammad H. Rahman
    • 3
  • Abdelkrim Brahmi
    • 1
  1. 1.Electrical Engineering DepartmentÉcole de Technologie SupérieureMontrealCanada
  2. 2.School of Physical & Occupational Therapy, Centre for Interdisciplinary Research in Rehabilitation of Greater MontrealMcGill UniversityMontrealCanada
  3. 3.Mechanical Engineering DepartmentUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations