Advertisement

Nonlinear Observer-Based Fault Detection and Isolation for a Manipulator Robot

  • Khaoula Oulidi OmaliEmail author
  • M. Nabil Kabbaj
  • Mohammed Benbrahim
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 175)

Abstract

Fault Detection and Isolation (FDI) techniques in robot manipulator is becoming one of the most phenomena in robotics in order to ensure higher levels of safety and productivity. Research, has been produced a considerable effort in seeking systematic approaches to fault detection for both linear and nonlinear dynamical systems. In the last decade considerable research efforts have been spent to seek for systematic approaches to Fault Detection (FD) in dynamical systems. Special attention has been addressing for robotic systems, especially for those operating in remote or hazardous environments, where a high degree of safety as well as self-detection capabilities are required. On the other hand, the development of effective strategies of fault detection for robot manipulators operating in an industrial context is a critical research task. Several FD techniques for robot manipulators have been proposed in the literature, although the problem of their application to industrial robots has not been extensively investigated.

In this chapter, we present a high-gain observer based fault detection and isolation scheme for a class of affine nonlinear systems. In order to test the effectiveness and the robustess of the proposed approach, a case study is developed for a special robot manipulator named Articulated Nimble Adaptable Trunk “ANAT” with a five-degree-of-freedom in order to detected and isolated sensor fault.

Keywords

Fault detection and isolation Robot manipulator High-gain observer Residuals Nonlinear systems 

References

  1. Busawon, K., Farza, M., & Hammouri, H. (1998). Observer design for a special class of nonlinear systems. International Journal of Control, 71, 405–418.MathSciNetCrossRefGoogle Scholar
  2. Craig, J. J. (1989). Introduction to robotics: Mechanics and control (2nd ed.). Boston: Addison-Wesley Longman Publishing, Inc.zbMATHGoogle Scholar
  3. Dixon, E., Warren, W., Ian, D., Dawson, D. M., & Hartranft, J. P. (2000). Fault detection for robot manipulators with parametric uncertainty: A prediction-error-based approach. IEEE Transactions on Robotics and Automation, 16(6), 689–699.CrossRefGoogle Scholar
  4. Esfandiari, F., & Khalil, H. (1987). Observer-based design of uncertain systems: Recovering state feedback robustness under matching conditions. In Allerton Conference, Monticello (pp. 97–106).Google Scholar
  5. Farza, M., Hammouri, H., Jallut, C., & Lieto, J. (1999). State observation of a nonlinear system: Application to (bio) chemical processes. AICHE Journal, 45, 93–106.CrossRefGoogle Scholar
  6. Farza, M., M’Saad, M., & Rossignol, L. (2004). Observer design for a class of MIMO nonlinear systems. Automatica, 40, 135–143.MathSciNetCrossRefGoogle Scholar
  7. Farza, M., M’saad, M., & Sekher, M. (2005). A set of observers for a class of nonlinear systems. In International Federation of Automation Control-IFAC’05, Prague, 37.Google Scholar
  8. Filaretov, V., Vukobratovic, M., & Zhirabok, A. (1999). Observer-based fault diagnosis in manipulation robots. Mechatronics, 9, 929–939.CrossRefGoogle Scholar
  9. Filaretov, V., Vukobratovic, M., & Zhirabok, A. (2003). Parity relation approach to fault diagnosis in manipulation robots. Mechatronics, 13, 141–152.CrossRefGoogle Scholar
  10. Frank, P. (1990). Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy? A survey and some new results. Automatica, 26, 459–474.CrossRefGoogle Scholar
  11. Frank, P. (1993). Advances in observer-based fault diagnosis. In TOOLDIAG’93, International Conference on Fault Diagnosis, Toulouse.Google Scholar
  12. Gauthier, J., & Kupka, I. (2001). Observability and observers for nonlinear systems. SIAM Journal Control Optimisation, 32, 181–188.Google Scholar
  13. Gauthier, J. P., Hammouri, H., & Othman, S. (1992). A simple observer for nonlinear systems – application to bioreactors. IEEE Transactions on Automatic Control, 37, 875–880.MathSciNetCrossRefGoogle Scholar
  14. Gauthier, J. P., Hammouri, H., & Othman, S. (2001). A simple observer for nonlinear systems – application to bioreactors. IEEE Transactions on Automatic Control, 37, 875–880.MathSciNetCrossRefGoogle Scholar
  15. Gertler, J. (1993). Residual generation in model-based fault diagnosis. Control Theory Advanced Technology, 9, 259–285.MathSciNetGoogle Scholar
  16. Gertler, J., & Monajemy, R. (1995). The state of the art. Automatica, 31, 627–635.CrossRefGoogle Scholar
  17. Guernez, C., Cassar, J., & Staroswiecki, M. (1997). Process fault diagnosis based on modeling and estimation methods-a survey automatica. In IFAC Symposium SAFEPROCESS’97, Kingston upon Hull.Google Scholar
  18. Hammouri, H., & Farza, M. (2003). Nonlinear observers for locally uniformly observable systems. ESAIM, 9, 353–370.MathSciNetzbMATHGoogle Scholar
  19. Hammouri, H., Busawon, K., Yahoui, A., & Grellet, G. (2001). A nonlinear observer for induction motors. European Physical Journal-Applied Physics, 15, 181–188.CrossRefGoogle Scholar
  20. Hou, M., Busawon, K., & Saif, M. (2000). Observer design for a class of MIMO nonlinear systems. IEEE Transactions on Automatic Control, 45, 1350–1355.MathSciNetCrossRefGoogle Scholar
  21. Isermann, R. (1984). Process fault diagnosis based on modeling and estimation methods-a survey automatica. International Federation of Automatic Control, 20, 387–404.zbMATHGoogle Scholar
  22. Jollie, I. T. (2016). Simultaneous fault diagnosis for robot manipulators with actuator and sensor faults. Information Sciences, 366, 12–30.MathSciNetCrossRefGoogle Scholar
  23. Khalil, H., & Praly, L. (2014). High-gain observers in nonlinear feedback control. International Journal of Robust and Nonlinear Control, 24, 993–1015.MathSciNetCrossRefGoogle Scholar
  24. Khalil, H., & Saberi, A. (2007). Adaptive stabilization of a class on nonlinear systems using high-gain feedback. IEEE Transactions on Automatic Control, 32, 1031–1035.MathSciNetCrossRefGoogle Scholar
  25. Koubaa, Y., Farza, M., & M’saad, M. (2004). Obsevateur adaptatif pour une classe des systèmes non linéaires. In 5th Conférence Internationale des Sciences et Techniques de l’Automatique, STA’04.Google Scholar
  26. Krishnaswami, V., & Rissoni, G. (1994). Nonlinear parity equation residual generation for fault detection and isolation. In IFAC Symposium SAFEPROCESS’94, Espoo (Vol. 1, pp. 317–322).CrossRefGoogle Scholar
  27. Ma, H. J., & Yang, G. H. (2016). Simultaneous fault diagnosis for robot manipulators with actuator and sensor faults. Information Sciences, 366, 12–30.MathSciNetCrossRefGoogle Scholar
  28. Mironovsky, L. (1989). Functional diagnosis of nonlinear discrete-time processes. Autom Remote Control, 6, 150–157.MathSciNetGoogle Scholar
  29. Nadri, M. (2001). Observation et commande des systèmes non linéaires et application aux bioprocédés. Thèse de doctorat, Université Claude Bernard Lyon-1.Google Scholar
  30. Patton, R. (1994). The state of the art. In IFAC Symposium SAFEPROCESS’94, Espoo (Vol. 1, pp. 1–24).Google Scholar
  31. Saberi, A., & Sannuti, P. (1990). Observer design for loop transfer recovery and for uncertain dynamical systems. IEEE Transactions on Automatic Control, 35, 878–897.MathSciNetCrossRefGoogle Scholar
  32. Schneider, H., & Frank, P. M. (1996). Observed- based supervision and fault detection in robots using nonlinear and fuzzy logic residual evaluation. IEEE Transactions on Control Systems Technology, 4(3), 274–282.CrossRefGoogle Scholar
  33. Shim, H., Son, Y., & Seo, J. (2001). Semi-global observer for multi-output nonlinear systems. Systems and Control Letters, 42, 233–244.MathSciNetCrossRefGoogle Scholar
  34. Shumsky, A. (1998). Parity relation method and its application to fault detection in nonlinear dynamic systems. Automation and Remote Control, 9, 155–165.Google Scholar
  35. Slotine, J. J., & Weiping, L. (1991). Applied nonlinear control. Englewood Cliffs: Printice-Hall International.zbMATHGoogle Scholar
  36. Tornambe, A. (1988). Use of asymptotic observers having high gains in the state and parameter estimation. In 27th IEEE Conference on Decision and Control, Austin (pp. 1791–1794).Google Scholar
  37. Tornambe, A. (1992). High-gain observers for non-linear systems. International Journal of Systems Science, 23, 1475–1489.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Khaoula Oulidi Omali
    • 1
    Email author
  • M. Nabil Kabbaj
    • 1
  • Mohammed Benbrahim
    • 1
  1. 1.Sidi Mohamed Ben Abdellah University FezFezMorocco

Personalised recommendations