Advertisement

Control of Robot Manipulators Using Modified Backstepping Sliding Mode

  • Yassine KaliEmail author
  • Maarouf Saad
  • Khalid Benjelloun
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 175)

Abstract

In this chapter, a robust backstepping sliding mode controller with time delay estimation method is presented for high accuracy joint space tracking trajectory of robot manipulators with unknown dynamics and external disturbances. The proposed method is based on backstepping scheme, on a switching function and on a time delay estimation in the final step. This structure is used to estimate unknown dynamics and disturbances, to adapt the switching gains in term of the error and its first time derivative and to reduce the control effort and the chattering phenomenon. Lyapunov theory is used to establish sufficient condition that ensures the stability of the closed-loop system. The proposed controller is simulated on a two-link robot and implemented in real time on the 7-DOF ANAT robot to show the effectiveness regarding unknown dynamics and external disturbances and chattering reduction.

Keywords

Backstepping Sliding mode Time delay estimation Uncertainties Robot manipulators Tracking position 

Notes

Acknowledgements

The authors are grateful to Nabil Derbel (University of Sfax, Tunisia), Jawhar Ghommam (University of Tunis, Tunisia) and Quanmin Zhu (University of the West of England) for the opportunity to contribute to the New developments and advances in the field of Robotics.

References

  1. Boiko, I. (2013). Chattering in sliding mode control systems with boundary layer approximation of discontinuous control. International Journal of Systems Science, 44, 1126–1133.MathSciNetzbMATHCrossRefGoogle Scholar
  2. Boiko, I., & Fridman, L. (2005). Analysis of chattering in continuous sliding-mode controllers. IEEE Transactions on Automatic Control, 50, 1442–1446.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Chang, Y. (2011). Block backstepping control of MIMO systems. IEEE Transactions on Automation Control, 56(5), 1191–1197.MathSciNetzbMATHCrossRefGoogle Scholar
  4. Cheah, C., Liu, C., & Slotine, J. (2006). Adaptive Jacobian tracking control of robots with uncertainties in kinematic, dynamic and actuator models. IEEE Transactions on Automatic Control, 51, 1024–1029.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Craig, J. (2005). Introduction to robotics: Mechanics and control (3rd ed.). Upper Saddle River, NJ: Pearson/Prentice-Hall.Google Scholar
  6. de Wit, C. C., & Slotine, J.-J. (1991). Sliding observers for robot manipulators. Automatica, 27(5), 859–864.MathSciNetCrossRefGoogle Scholar
  7. Dotoli, M. (2003). Fuzzy sliding mode control with piecewise linear switching manifold. Asian Journal of Control, 5(4), 528–542.CrossRefGoogle Scholar
  8. Fallaha, C., Saad, M., Kanaan, H., & Al-Haddad, K. (2011). Sliding mode robot control with exponential reaching law. IEEE Transactions on Industrial Electronics, 58, 600–610.CrossRefGoogle Scholar
  9. Fridman, L. (2001). An averaging approach to chattering. IEEE Transactions on Automatic Control, 46, 1260–1265.MathSciNetzbMATHCrossRefGoogle Scholar
  10. Fridman, L., & Levant, A. (2002). Higher order sliding mode. In J. P. Barbot & W. Perruguetti (Eds.), Sliding mode control in engineering (Systems and control book series). Marcel Dekker.Google Scholar
  11. Geng, J., Sheng, Y., Liu, X., & Liu, B. (2013). Second order time varying sliding mode control for uncertain systems. In 25th Chinese Control and Decision Conference (CCDC), Guiyang (pp. 3880–3885).Google Scholar
  12. Guo, Y., & Chung, M.-J. (2003). An adaptive fuzzy sliding mode controller for robotic manipulators. IEEE Transactions on Systems, Man, and Cybernetics, 33(2), 149–159.MathSciNetCrossRefGoogle Scholar
  13. Hsia, T., & Jung, S. (1995). A simple alternative to neural network control scheme for robot manipulators. IEEE Transactions on Industrial Electronics, 42(4), 414–416.CrossRefGoogle Scholar
  14. Jamoussi, K., Ouali, M., Chrifi-Alaoui, L., & Benderradji, H. (2013). Robust sliding mode control using adaptive switching gain for induction motors. International Journal of Automation and Computing, 10(4), 303–311.CrossRefGoogle Scholar
  15. Jezernik, K., Rodic, M., Safaric, R., & Curk, B. (1997). Neural network sliding mode robot control. Robotica, 15, 23–30.CrossRefGoogle Scholar
  16. Jin, M., Kang, S. H., & Chang, P. H. (2008). Robust compliant motion control of robot with nonlinear friction using time-delay estimation. IEEE Transactions on Industrial Electronics, 55(1), 258–269.CrossRefGoogle Scholar
  17. Kali, Y., Saad, M., Benjelloun, K., & Benbrahim, M. (2015). Sliding mode with time delay control for mimo nonlinear systems with unknown dynamics. International Workshop on Recent Advances in Sliding Modes, Istanbul, Turkey, April 9–11.Google Scholar
  18. Kali, Y., Saad, M., Benjelloun, K., & Benbrahim, M. (2017a). Sliding mode with time delay control for robot manipulators (pp. 135–156). Singapore: Springer.Google Scholar
  19. Kali, Y., Saad, M., Benjelloun, K., & Fatemi, A. (2017b). Discrete-time second order sliding mode with time delay control for uncertain robot manipulators. Robotics and Autonomous Systems, 94, 53–60.CrossRefGoogle Scholar
  20. Levant, A. (1993). Sliding order and sliding accuracy in sliding mode control. International Journal of Control, 58, 1247–1263.MathSciNetzbMATHCrossRefGoogle Scholar
  21. Lewis, F., Abdallah, C., & Dawson, D. (1993). Control of robot manipulators. New York: Macmillan Publishing Company.Google Scholar
  22. Lin, C. (2003). Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks. IEEE Transactions on Fuzzy Systems, 14(6), 849–859.CrossRefGoogle Scholar
  23. Ling, R., Wu, M., Dong, Y., & Chai, Y. (2012). High order sliding mode control for uncertain nonlinear systems with relative degree three. Nonlinear Science and Numerical Simulation, 17, 3406–3416.MathSciNetzbMATHCrossRefGoogle Scholar
  24. Liu, J., & Wang, X. (2012). Advanced sliding mode control for mechanical systems. Berlin/Heidelberg: Springer.zbMATHGoogle Scholar
  25. Rahman, M., Saad, M., Kenné, J., & Archambault, P. (2013). Control of an exoskeleton robot arm with sliding mode exponential reaching law. International Journal of Control, Automation and Systems, 11(1), 92–104.CrossRefGoogle Scholar
  26. Seraji, H. (1987). Adaptive control of robotic manipulators. In 26th IEEE Conference on Decision and Control, Los Angeles (p. 26).Google Scholar
  27. Slotine, J., & Li, W. (1991). Applied nonlinear control. Taipei: Printice-Hall International.zbMATHGoogle Scholar
  28. Slotine, J. J., & Sastry, S. S. (1983). Tracking control of non-linear systems using sliding surfaces, with application to robot manipulators. International Journal of Control, 38(2), 465–492.MathSciNetzbMATHCrossRefGoogle Scholar
  29. Slotine, J. J., Hedrick, J. K., & Misawa, E. A. (1986). On sliding observers for nonlinear systems. In American Control Conference, Seattle (pp. 1794–1800).Google Scholar
  30. Spong, M., Hutchinson, S., & Vidyasagar, M. (2005). Robot dynamics and control. New York: Wiley.Google Scholar
  31. Toumi, K., & Ito, O. (1990). A time delay controller for systems with unknown dynamics. ASME Journal of Dynamic System, Measurement and Control, 112, 133–141.zbMATHCrossRefGoogle Scholar
  32. Toumi, K., & Shortlidge, C. (1991). Control of robot manipulators using time delay. In IEEE International Conference of Robotics and Automation.Google Scholar
  33. Utkin, V. (1992). Sliding mode in control and optimization. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  34. Utkin, V., Guldner, J., & Shi, J. (1999). Sliding mode control in electomechanical systems (2nd ed.). Boca Raton/London: CRC Press.Google Scholar
  35. Utkin, V. (2016). Discussion aspects of high-order sliding mode control. IEEE Transactions on Automatic Control, 61(3), 829–833.MathSciNetzbMATHCrossRefGoogle Scholar
  36. Yi, S., & Woo, P.-Y. (1997). A robust fuzzy logic controller for robot manipulators with uncertainties. IEEE Transactions on Systems, Man, and Cybernetics, 24(4), 599–602.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Ecole Mohammadia d’IngénieursUniversity of Mohammed VRabatMorocco
  2. 2.Department of Electrical EngineeringÉcole de Technologie SupérieureMontrealCanada

Personalised recommendations