Cable-Driven Parallel Robot Modelling for Rehabilitation Use

  • Hachmia FaqihiEmail author
  • Maarouf Saad
  • Khalid Benjelloun
  • Mohammed Benbrahim
  • M. Nabil Kabbaj
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 175)


The aim of this chapter is to presents a Kinematic analysis of a Cable-Driven Robot for rehabilitation use of human lower limb, by taking into account the constraints required by the entrainment system and the mobile platform (human leg). The proposed approach is focused on optimizing the manipulability and the human performance of the human leg, as being a physiologically constrained three-link arm. The obtained forward kinematic model leads to define the feasible workspace of the human leg in the considered configuration. Using an effective optimization-based human performance measure that incorporates a new objective function of musculoskeletal discomfort, and the mapping relation between articular joints actuator, length cables and articular joint mobile platform, the optimal inverse kinematic (IK) model is obtained.


Cable-Driven Robot Rehabilitation Lower limb Optimization Inverse Kinematics Trajectory generation Minimum Jerk 


  1. Abdel-Malek, K., Yang, J., Yu, W., & Duncan, J. (2004). Human performance measures: Mathematics. Iowa: University of Iowa.Google Scholar
  2. Bryson, J. T., & Agrawal, S. K. (2013). Methodology to identify and analyze optimal cable configurations in the design of cable-driven serial manipulators. In International Design Engineering Technical Conference and Computers and Information in Engineering Conference, 37th ASME Conference Mechanisms and Robotics IDETC/CIE.Google Scholar
  3. Chaffin, D. B., Andersson, G. B. J., & Martin, B. J. (1992). Occupational biomechanics. New York: Wiley.Google Scholar
  4. Chen, Y. (2000). Changes in lifting dynamics after localized arm fatigue. International Journal of Industrial Ergonomics, 25(6), 611–619.MathSciNetCrossRefGoogle Scholar
  5. Dombre, E., & Khalil, W. (2010). Modeling, performance analysis and control of robot manipulators. London: Wiley.zbMATHGoogle Scholar
  6. El-Ghazaly, G., Gouttefarde, M., & Creuze, V. (2014). Adaptive terminal sliding mode control of a redundantly-actuated cable-driven parallel manipulator: Cogiro. In Proceedings of the Second International Conference on Cable-Driven Parallel Robots. Springer.Google Scholar
  7. Eschenauer, H. A., & Thierauf, G. (1989). Discretization methods and structural optimization, procedures and applications. In Proceedings of a GAMM-Seminar October 5–7, 1988, Siegen, FRG (Lecture notes in engineering). Springer.Google Scholar
  8. Faqihi, H., Saad, M., Ben Jelloun, K., Benbrahim, M., & Kabbaj, M. N. (2016). Tracking trajectory of a cable-driven robot for lower limb rehabilitation. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 10(8), 1036–1041.Google Scholar
  9. Gill, P. E., Murray, W., & Saunders, M. A. (2002). Snopt: An SQP algorithm for large-scale constrained optimization. SIAM Review, 47(1), 99–131.MathSciNetCrossRefGoogle Scholar
  10. Glowinski, S., & Krzyzynski, T. (2016). An inverse kinematic algorithm for human leg. Journal of Theoretical and Applied Mechanics, 54(1), 53–61.CrossRefGoogle Scholar
  11. Gouttefarde, M., & Gosselin, C. M. (2012). Analysis of the wrench-closureworkspace of planar parallel cable-drivenmechanisms. IEEE Transaction on Robotics, 22(3), 434–445.CrossRefGoogle Scholar
  12. Hernandez-Santos, C., Soto, R., & Rodriguez, E. (2011). Design and dynamic modeling of humanoid biped robot e-robot. IEEE Conference on Electronics, Robotics and Automotive Mechanics CERMA, Cuernavaca, Mexico.Google Scholar
  13. Marler, R. T., Arora, J. S., Yang, J., Kim, H. J., & Abdel-Malek, K. (2009). Use of multi-objective optimization for digital human posture prediction. Engineering Optimization, 41(10), 925–943.CrossRefGoogle Scholar
  14. Mi, Z., Yang, J., & Abdel-Malek, K. (2009). Optimization-based posture prediction for human upper body. Robotica, 27(4), 607–622.CrossRefGoogle Scholar
  15. Pennycott, A., Wyss, D., Vallery, H., Klamroth-Marganska, V., & Riener, R. (2012). Towards more effective robotic gait training for stroke rehabilitation: A review. Journal of NeuroEngineering and Rehabilitation, 9, 65.CrossRefGoogle Scholar
  16. Rastegarpanah, A., & Mozafar, S. (2016). Lower limb rehabilitation using patient data. Applied Bionics and Biomechanics, 2016, 1–10.Google Scholar
  17. Rezazadeh, S., & Behzadipour, S. (2011). Workspace analysis of multibody cable-driven mechanisms. Journal of Mechanisms and Robotics. ASME, 3, 021005.CrossRefGoogle Scholar
  18. Spong, W. M., Hutchinson, S., & Vidyasagar, M. (2006). Robot modeling and control. New Delhi: Wiley.Google Scholar
  19. Winter, D. A. (2009). Biomechanics and motor control of human movement. New York: Wiley.CrossRefGoogle Scholar
  20. Yang, J., Marler, R. T., Kim, H. J., Arora, J. S., & Abdel-Malek, K. (2004). Multi-objective optimization for upper body posture prediction. In Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, NY (pp. 1–18). American Institute of Aeronautics and Astronautics.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Hachmia Faqihi
    • 1
    Email author
  • Maarouf Saad
    • 2
  • Khalid Benjelloun
    • 1
  • Mohammed Benbrahim
    • 3
  • M. Nabil Kabbaj
    • 3
  1. 1.Automatic and Industrial Informatics Laboratory (LAII), Ecole Mohammadia d’IngenieursMohammed V UniversityRabatMorocco
  2. 2.Electrical Engineering DepartmentEcole de Technologie SuperieureMontrealCanada
  3. 3.Faculty of Sciences, Integration of Systems and Advanced Technologies Laboratory (LISTA)University of FezFezMorocco

Personalised recommendations