Advertisement

On the Tip–Path-Plane Flapping Angles Estimation for Small–Scale Flybarless Helicopters at Near–Hover

  • Mohammad K. Al–SharmanEmail author
  • Mamoun F. Abdel–Hafez
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 175)

Abstract

Observing the Tip-path-plane (TPP) flapping motion is essential for characterizing the helicopter’s main rotor dynamics. The high-order harmonics of the rotor blade flapping periodic motion are considered the major sources of helicopter vibration. However, incorporating precise information of the flapping dynamics with the overall helicopter dynamic model describes better the main rotor motion. This enables designers to innovate blade designs that have less dynamic vibration. Moreover, the flapping states are crucial for analysing the main rotor axial force and moment components. However, obtaining measurements for the flapping states is not directly possible. This mandates researchers in the field to exclude the flapping dynamics, despite being essential, and use some algebraic expressions and numerical approximations instead. This chapter addresses the problem of designing a model-based estimation algorithm for the unobservable flapping angles while a near-hover flight is being carried out. A Kalman state estimation algorithm is designed to provide accurate flapping estimates for the Maxi Joker 3 flapping angles. The presented estimator has succeeded in obtaining accurate longitudinal and lateral flapping angles estimates with small root mean square error of estimation of 0.3770 and 0.2464, respectively. Besides several simulation tests, a real outdoor near-hover flight was performed to validate the proposed estimation method.

Keywords

Small-scale helicopter Flapping angles estimation State estimation Near–hover dynamics 

References

  1. Abdel-Hafez, M. F., & Speyer, J. L. (2008). GPS measurement noise estimation in non ideal environments. Navigation , 55(1), 55–66.CrossRefGoogle Scholar
  2. Abdel-Hafez, M. F. (2010). The autocovariance least-squares technique for GPS measurement noise estimation. IEEE Transactions on Vehicular Technology, 59(2), 574–588.CrossRefGoogle Scholar
  3. Al-Sharman, M. (2015). Auto takeoff and precision landing using integrated GPS/INS/Optical flow solution. Master thesis, American University of Sharjah, Sharjah.Google Scholar
  4. Al-Sharman, M. (2016). Attitude estimation for a small-scale flybarless helicopter. In Multisensor attitude estimation: Fundamental concepts and applications. Boca Raton: CRC Press.Google Scholar
  5. Al-Sharman, M., Abdel-Hafez, M., & Al-Omari, M. (2014). State estimation for a small scale flybar-less helicopter. In 2nd International Conference on System-Integrated Intelligence: Challenges for Product and Production Engineering, Bremen, Germany.Google Scholar
  6. Al-Sharman, M., Abdel-Hafez, M., & Al-Omari, M. (2015). Attitude and flapping angles estimation for a small-scale flybarless helicopter using a Kalman filter. IEEE sensors Journal, 15(4), 2114–2122.CrossRefGoogle Scholar
  7. Al-Sharman, M. K., Emran, B. J. M., Jaradat, A., Najjaran, H., Al-Husari, R., & Zweiri, Y. (2018a). Precision landing using an adaptive fuzzy multi-sensor data fusion architecture. Applied soft computing, 69, 149–164.CrossRefGoogle Scholar
  8. Al-Sharman, M., Al-Jarrah, M., & Abdel-Hafez, M. (2018b). Auto takeoff and precision terminal-phase landing using an experimental optical flow model for GPS/INS enhancement. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 5(1), pp. 011001-1–011001-17.Google Scholar
  9. Allred, C. J., Churchill, D., & Buckner, G. D. (2017). Real-time estimation of helicopter rotor blade kinematics through measurement of rotation induced acceleration. Mechanical Systems and Signal Processing, 91, 183–197.CrossRefGoogle Scholar
  10. Alshoubaki, A., Al-Sharman, M., & Al-Jarrah, M. A. (2015). Flybarless helicopter autopilot rapid prototyping using hardware in the loop simulation. In 10th International Symposium on Mechatronics and its Applications (ISMA), Sharjah, UAE.Google Scholar
  11. Chen, R. T. (1987). Flap-lag equations of motion of rigid, articulated rotor blade with three hinge sequences. Washington, DC: NASA.Google Scholar
  12. Chen, R. T. N. (1990). A survey of nonuniform inflow models for rotorcraft flight dynamics and control applications. VERTICA, 2(14), 147–184.Google Scholar
  13. Gavrilets, V. (2003). Autonomous aerobatic maneuvering of miniature. Ph.D. thesis, Massacheutes Institute of Technology.Google Scholar
  14. Gavrilets, V., Mettler, B., & Feron, E. (2001). Nonlinear model for a smallsize acrobatic helicopter. In Proceedings of AIAA Guidance, Navigation, and Control Conference, Montreal, QC, Canada, 2001, Paper AIAA-2001-4333.Google Scholar
  15. Gavrilets, V., Martinos, I., Mettler, B., & Feron, E. (2002). Control logic for automated aerobatic flight of miniature helicopter. In AIAA Guidance, Navigation and Control Conference, Monterey, CA, USA 2002.Google Scholar
  16. Hald, U., Hesselbaek, M., Holmgaard, J. T., Jensen, C. S., Jakobsen, S. L., & Siegumfeldt, M. Autonomous helicopter-modelling and control. Aalborg: Aalborg University.Google Scholar
  17. Johnson, W. (1981). Comparison of calculated and measured helicopter rotor lateral flapping angles. Journal of the American Helicopter Society, 26(2), 46–50.CrossRefGoogle Scholar
  18. Leishman, J. G. (2000). Principles of helicopter aerodynamics. Cambridge: Cambridge University Press.Google Scholar
  19. Liu, H., Lu, G., & Zhong, Y. (2013). Robust LQR attitude control of a 3-DOF laboratory helicopter for aggressive maneuvers. IEEE Transactions on Industrial Electronics, 60(10), 4627–4636.CrossRefGoogle Scholar
  20. Marantos, P., Bechlioulis, C. P., & Kyriakopoulos, K. J. (2017). Robust trajectory tracking control for small-scale unmanned helicopters with model Uncertainties. IEEE Transactions on Control Systems Technology, 25(6), 2010–2021.CrossRefGoogle Scholar
  21. Padfield, G. D. (1996). Helicopter flight dynamics: The theory and application of flying qualities and simulation modeling (AIAA education series). AIAA, Washington, DC.Google Scholar
  22. Perdomo, O., & Wei, F.-S. (2017). On the flapping motion of a helicopter blade. Applied Mathematical Modelling, 46, 299–311.MathSciNetCrossRefGoogle Scholar
  23. Taamallah, S. (2011). Small-scale helicopter blade flap-lag equations of motion for a flybarless pitch-lag-flap main rotor. In AIAA Modeling and Simulation Technologies Conference, Portland.Google Scholar
  24. Zappa, E., Trainelli, L., Liu, R., Rolando, A., Cordisco, P., Vigoni, E., & Redaelli, M. (2016). Real time contactless sensor for helicopter blade angle measurement. In 2016 IEEE Metrology for Aerospace (MetroAeroSpace), Florence, Italy.Google Scholar
  25. Zhu, B., & Zuo, Z. (2017). Approximate analysis for main rotor flapping dynamics of a model-scaled helicopter with Bell-Hiller stabilizing bar in hovering and vertical. Nonlinear Dynamics, 85(3), 1705–1717.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Mohammad K. Al–Sharman
    • 1
    Email author
  • Mamoun F. Abdel–Hafez
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of WaterlooONCanada
  2. 2.Mechanical Engineering DepartmentAmerican University of SharjahSharjahUAE

Personalised recommendations