Backstepping-Based Nonlinear RISE Feedback Control for an Underactuated Quadrotor UAV Without Linear Velocity Measurements

  • Jawhar GhommamEmail author
  • Luis F. Luque-Vega
  • Maarouf Saad
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 175)


In this paper, a robust three dimensional output feedback control problem is proposed for a 6-degrees-of-freedom model of a quadrotor unmanned aerial vehicle (UAV) to track a bounded and sufficiently smooth reference trajectory in the presence of slowly varying force disturbances. Due to the underactuation structure of the UAV, a nonlinear output feedback controller based on the robust integral of the sign error signal (RISE) mechanism is first designed for the translational dynamics to ensure position reference tracking without velocity measurement. The angular velocity is then regarded as intermediate control signal for the rotational dynamics to fulfill the task of attitude angle reference tracking. The torque input is designed taking full advantage of the smooth exact differentiator that circumvents derivatives computation of virtual controls, the backstepping technique is then judiciously modified to allow the use of the RISE control technique to compensate for the external disturbances. The proposed controller yields semi-global asymptotic stability tracking despite the added disturbances in the dynamics. Simulation results are shown to demonstrate the proposed approach.


RISE-backstepping Exact differentiator Underactuated quadrotor Output feedback 


  1. Abdessameud, A., & Tayebi, A. (2010). Global trajectory tracking control of VTOL-UAVs without linear velocity measurements. Automatica, 46(6), 1053–1059.MathSciNetzbMATHCrossRefGoogle Scholar
  2. Benallegue, A., Mokhtari, A., & Fridman, L. (2008). High-order sliding-mode observer for a quadrotor UAV. International Journal of Robust and Nonlinear Control, 18(4–5), 427–440.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Bertrand, S., Guénard, N., Hamel, T., Piet-Lahanier, H., & Eck, L. (2011). A hierarchical controller for miniature VTOL UAVs: Design and stability analysis using singular perturbation theory. Control Engineering Practice, 19(10), 1099–1108.CrossRefGoogle Scholar
  4. Cai, Z., de Queiroz, M. S., & Dawson, D. M. (2006). Robust adaptive asymptotic tracking of nonlinear systems with additive disturbance. IEEE Transactions on Automatic Control, 51(3), 524–529.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Castillo, P., Dzul, A., & Lozano, R. (2004). Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Transactions on Control Systems Technology, 12(4), 510–516.CrossRefGoogle Scholar
  6. Ciulkin, M., Pawluszewicz, E., Kaparin, V., & Kotta, U. (2015). Input-output linearization by dynamic output feedback on homogeneous time scales. In 20th International Conference on Methods and Models in Automation and Robotics (MMAR), Miȩdzyzdroje, Poland (pp. 477–482).Google Scholar
  7. Clarke, F. H. (1990). Optimization and nonsmooth analysis. Philadelphia: SIAM.zbMATHCrossRefGoogle Scholar
  8. Cunha, R., Cabecinhas, D., & Silvestre, C. (2009). Nonlinear trajectory tracking control of a quadrotor vehicle. In Proceedings of ECC 2009 – 10th European Control Conference, Budapest, Hungary.zbMATHGoogle Scholar
  9. De Queiroz, M., Hu, J., Dawson, D., Burg, T., & Donepudi, S. (1997). Adaptive position/force control of robot manipulators without velocity measurements: Theory and experimentation. IEEE Transactions on Systems, Man, and Cybernetics, 27-B(5), 796–809.CrossRefGoogle Scholar
  10. Ding, X., Wang, X., Yu, Y., & Zha, C. (2017). Dynamics modeling and trajectory tracking control of a quadrotor unmanned aerial vehicle. Journal of Dynamic Systems, Measurement, and Control, 139, 1–11.Google Scholar
  11. Do, K. D. (2015). Path-tracking control of stochastic quadrotor aircraft in three-dimensional space. Journal of Dynamic Systems, Measurement, and Control, 137(10), 1–11.CrossRefGoogle Scholar
  12. Filippov, A. (1964). Differential equations with discontinuous right-hand side. American Mathematical Society Translations, 42(2), 199–231.zbMATHGoogle Scholar
  13. Garcia, R., Rubio, F., & Ortega, M. (2012). Robust PID control of the quadrotor helicopter. IFAC Proceedings Volumes, 45(3), 229–234.CrossRefGoogle Scholar
  14. Ghommam, J., Charland, G., & Saad, M. (2015). Three-dimensional constrained tracking control via exact differentiation estimator of a quadrotor helicopter. Asian Journal of Control, 17(3), 1093–1103.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Huang, M., Xian, B., Diao, C., Yang, K., & Feng, Y. (2010). Adaptive tracking control of underactuated quadrotor unmanned aerial vehicles via backstepping. In Proceedings of the IEEE American control Conference (ACC), Baltimore, MD, USA (pp. 2076–2081).Google Scholar
  16. Ilcev, D. S., & Sibiya, S. S. (2015). Weather observation via stratospheric platform stations. In 2015 IST-Africa Conference, Lilongwe, Malawi (pp. 1–12).Google Scholar
  17. Kendoul, F. (2009). Nonlinear hierarchical flight controller for unmanned rotorcraft: Design, stability, and experiments. Journal of Guidance Control and Dynamics, 32(6), 1954–1958.CrossRefGoogle Scholar
  18. Kim, H. J., & Shim, D. H. (2003). A flight control system for aerial robots: Algorithms and experiments. Control Engineering Practice, 11(2), 1389–1400.CrossRefGoogle Scholar
  19. Lee, D. B., Burg, T. C., Xian, B., & Dawson, D. M. (2007). Output feedback tracking control of an underactuated quad-rotor UAV. In Proceedings of the 2007 American Control Conference, New York, USA (pp. 1775–1780).Google Scholar
  20. Levant, A. (2005). Quasi-continuous high-order sliding-mode controllers. IEEE Transactions on Automatic Control, 50(11), 1812–1816.MathSciNetzbMATHCrossRefGoogle Scholar
  21. Madani, T., & Benallegue, A. (2007). Sliding mode observer and backstepping control for a quadrotor unmanned aerial vehicles. In 2007 American Control Conference, New York, USA (pp. 5887–5892).Google Scholar
  22. Magsino, E. R., Chua, J. R. B., Chua, L. S., de Guzman, C. M., & Gepaya, J. V. L. (2016). A rapid screening algorithm using a quadrotor for crack detection on bridges. In 2016 IEEE Region 10 Conference (TENCON), Singapore (pp. 1829–1833).Google Scholar
  23. Ortiz, J. P., Minchala, L. I., & Reinoso, M. J. (2016). Nonlinear robust h-infinity pid controller for the multivariable system quadrotor. IEEE Latin America Transactions, 14(3), 1176–1183.CrossRefGoogle Scholar
  24. Paden, B., & Sastry, S. (1987). A calculus for computing filippov’s differential inclusion with application to the variable structure control of robot manipulators. IEEE Transactions on Circuits System, 34(1), 73–82.MathSciNetzbMATHCrossRefGoogle Scholar
  25. Rinaldi, F., Chiesa, S., & Quagliotti, F. (2013). Linear quadratic control for quadrotors UAVs dynamics and formation flight. Journal of Intelligent and Robotic Systems, 70(1–4), 203–220.CrossRefGoogle Scholar
  26. Salih, A. L., Moghavvemi, M., Mohamed, H. A. F., & Gaeid, K. S. (2010). Modelling and PID controller design for a quadrotor unmanned air vehicle. In 2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania (Vol. 1, pp. 1–5).Google Scholar
  27. Van Den Eijnden, S. (2017). Cascade based tracking control of quadrotors. Master’s thesis, Eindhoven University of Technology.Google Scholar
  28. Wang, L., & Jia, H. (2014). The trajectory tracking problem of quadrotor UAV: Global stability analysis and control design based on the cascade theory. Asian Journal of Control, 16(2), 574–588.MathSciNetzbMATHCrossRefGoogle Scholar
  29. Xian, B., Dawson, D. M., de Queiroz, M. S., & Chen, J. (2004). A continuous asymptotic tracking control strategy for uncertain nonlinear systems. IEEE Transactions on Automatic Control, 49(7), 1206–1211.MathSciNetzbMATHCrossRefGoogle Scholar
  30. Xian, B., & Zhang, Y. (2017). A new smooth robust control design for uncertain nonlinear systems with non-vanishing disturbances. International Journal of Control, 89(6), 1285–1302.MathSciNetzbMATHCrossRefGoogle Scholar
  31. Yao, Z. (2017). Nonlinear robust adaptive hierarchical sliding mode control approach for quadrotors. International Journal of Robust and Nonlinear Control, 27(6), 925–941.MathSciNetzbMATHCrossRefGoogle Scholar
  32. Zou, Y. (2017). Nonlinear hierarchical control for quad-rotors with rotation matrix. International Journal of Control, 90(7), 1308–1318.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jawhar Ghommam
    • 1
    Email author
  • Luis F. Luque-Vega
    • 2
  • Maarouf Saad
    • 3
  1. 1.Department of Electrical and Computer Engineering, College of EngineeringSultan Quaboos UniversityMuscatOman
  2. 2.CIIDETEC-UVMUniversidad del Valle de MexicoMexico CityMexico
  3. 3.Department of Electrical EngineeringÉcole de Technologie SuperieureMontrealCanada

Personalised recommendations