Cloud Robotic: Opening a New Road to the Industry 4.0

  • Manal AissamEmail author
  • Mohammed Benbrahim
  • Mohammed Nabil Kabbaj
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 175)


Cloud Robotics (CR) is a rising field of robotics rooted in cloud computing, cloud storage, and other Internet technologies centered around the benefits of converged infrastructure and shared services. It allows robots to benefit from the powerful computational, storage, and communications resources of modern data centers. In addition, it removes overheads for maintenance and updates, and reduces dependence on custom middleware. This chapter reviews the concept of cloud-enabled robotics with some of the most applications related to it. Also, it explores the trends of robotic technology in Industry 4.0. Since the advent of Information and Communication Technologies (ICT), economies around the world have ground dramatically as companies can compete on a global scale. The Fourth Industrial Revolution will be based on cyber-physical systems, the Internet of Things and Internet of Services.


Cloud robotics Cloud computing Robotization Industry 4.0 


  1. Ansari, F., Pal, J., Shukla, J., Nandi, G., & Chakraborty, P. (2012). A cloud based robot localization technique. In Internaional Conference on Contemporary Computing, Noida, India (pp. 347–357).Google Scholar
  2. Bahrin, M. A. K., Othman, F., Azli, N. H. N., & Talib, M. F. (2016). Industry 4.0: A review on industrial automation and robotic. Jurnal Teknologi, 78(6–13), 137–143.Google Scholar
  3. Bakshi, K. (2011). Considerations for cloud data centers: Framework, architecture and adoption. In IEEE Aerospace Conference, Big Sky, MT, USA (pp. 1–7).Google Scholar
  4. Boeglin, J. (2015). The costs of self-driving cars: Reconciling freedom and privacy with tort liability in autonomous vehicle regulation. Yale Journal of Law and Technology, 17, 172–203.Google Scholar
  5. Cacace, J., Finzi, A., Lippiello, V., Loianno, G., & Sanzone, D. (2015). Aerial service vehicles for industrial inspection: Task decomposition and plan execution. Applied Intelligence, 42, 49–62.CrossRefGoogle Scholar
  6. Cacace, J., Finzi, A., Lippiello, V., Furci, M., Mimmo, N., & Marconi, L. (2016). A control architecture for multiple drones operated via multimodal interaction in search & rescue mission. In IEEE International Symposium on Safety, Security, and Rescue Robotics, Lausanne, Switzerland (pp. 233–239).Google Scholar
  7. Chen, Y., & Hu, H. (2013). Internet of intelligent things and robot as a service. Simulation Modelling Practice and Theory, 34, 159–171.CrossRefGoogle Scholar
  8. Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79–97.CrossRefGoogle Scholar
  9. Du, Z., Yang, W., Chen, Y., Sun, X., Wang, X., & Xu, C. (2011). Design of a robot cloud center. In Tenth International Symposium on Autonomous Decentralized Systems (ISADS), Tokyo/Hiroshima, Japan (pp. 269–275).Google Scholar
  10. Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and mapping: Part I. IEEE Robotics and Automation Magazine, 13, 99–110.CrossRefGoogle Scholar
  11. Gherardi, L., Hunziker, D., & Mohanarajah, G. (2014). A software product line approach for configuring cloud robotics applications. In IEEE 7th International Conference on Cloud Computing (CLOUD), Anchorage, AK, USA (pp. 745–752).Google Scholar
  12. Hu, G., Tay, W., & Wen, Y. (2012). Cloud robotics: Architecture, challenges and applications. IEEE Network, 26, 21–28.CrossRefGoogle Scholar
  13. Jang, W.-S., & Kim, R. (2013). Template design of automatic source code generation based on script language used in cloud robot compiling environment. CST, 27, 184–185.Google Scholar
  14. Jordan, S., Haidegger, T., Kovs, L., Felde, I., & Rudas, I. (2013). The rising prospects of cloud robotic applications. In IEEE 9th International Conference on Computational Cybernetics, Tihany, Hungary (pp. 327–332).Google Scholar
  15. Kamei, K., Nishio, S., Hagita, N., & Sato, M. (2012). Cloud networked robotics. IEEE Network, 26, 28–34.CrossRefGoogle Scholar
  16. Kehoe, B., Patil, S., Abbeel, P., & Goldberg, K. (2015). A survey of research on cloud robotics and automation. IEEE Transactions on Automation Science and Engineering, 12, 398–409.CrossRefGoogle Scholar
  17. Kharel, A., Bhutia, D., Rai, S., & Ningombam, D. (2014). Cloud robotics using ROS. International Journal of Computer Applications (pp. 18–21).Google Scholar
  18. Kohler, D., Hickman, R., Conley, K., & Gerkey, B. (2011). Cloud robotics. In Google I/O 2011 Developer Conference, Mountain View, CA, USA.Google Scholar
  19. Koken, B. (2015). Cloud robotics platforms. Interdisciplinary Description of Complex Systems, 13, 26–33.CrossRefGoogle Scholar
  20. Kuffner, J. J. (2010). Cloud-enabled robots. In IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA (pp. 1–9).Google Scholar
  21. Ma, Y., Zhang, Y., Wan, J., Zhang, D., & Pan, N. (2015). Robot and cloud-assisted multi-modal healthcare system. New York: Springer.CrossRefGoogle Scholar
  22. MacDougall, W. (2014). Industrie 4.0: Smart manufacturing for the future. Berlin: Germany Trade and Invest.Google Scholar
  23. Marconi, L., Melchiorri, C., Beetz, M., Pangercic, D., Siegwart, R., Leutenegger, S., Carloni, R., Stramigioli, S., Bruyninckx, H., Doherty, P., Kleiner, A., Lippiello, V., Finzi, A., Siciliano, B., Sala, A., & Tomatis, N. (2012). The sherpa project: Smart collaboration between humans and ground-aerial robots for improving rescuing activities in alpine environments. In IEEE International Symposium on Safety, Security, and Rescue Robotics, College Station, TN, USA.Google Scholar
  24. Mathur, P., & Nishchal, N. (2010). Cloud computing: New challenge to the entire computer industry. In First International Conference on Parallel, Distributed and Grid Computing, Solan, India (pp. 223–228).Google Scholar
  25. Mavridis, N., Bourlai, T., & Ognibene, D. (2012). The human-robot cloud: Situated collective intelligence on demand. In IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Bangkok, Thailand (pp. 360–365).Google Scholar
  26. Mitchell, J. J., Glenn, N. F., Anderson, M. O., Hruska, R. C., Halford, A., Baun, C., & Nydegger, N. (2012). Unmanned aerial vehicle (UAV) hyperspectral remote sensing for dryland vegetation monitoring. In 4th Workshop on Hyperspectral Image and Signal Processing, Shanghai, China.Google Scholar
  27. Mohanarajah, G., Hunziker, D., D’Andrea, R., & Waibel, M. (2014). Rapyuta: A cloud robotics platform. IEEE Transactions on Automation Science and Engineering, 12, 481–493.CrossRefGoogle Scholar
  28. Mouradian, C., Errounda, F., Belqasmi, F., & Glitho, R. (2014). An infrastructure for robotic applications as cloud computing services. In IEEE World Forum on Internet of Things, Seoul, South Korea (pp. 377–382).Google Scholar
  29. Nakagawa, S., Igarashi, N., Tsuchiya, Y., Narita, M., & Kato, Y. (2012). An implementation of a distributed service framework for cloud-based robot services. In 38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada (pp. 4148–4153).Google Scholar
  30. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., & Ng, A. (2009). ROS: An open-source robot operating system. Proceedings of ICRA Workshop on Open Source Software, Kobe, Japan.Google Scholar
  31. Ren, F. (2011). Robotics cloud and robotics school. In 7th International Conference on Natural Language Processing and Knowledge Engineering (NLP-KE), Tokushima, Japan (pp. 1–8).Google Scholar
  32. Rimal, B., Eunmi, C., & Lumb, I. (2009). A taxonomy and survey of cloud computing systems. Fifth International Joint Conference on INC, IMS and IDC, Seoul, South Korea (pp. 44–51).Google Scholar
  33. Rüssmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., & Harnisch, M. (2015). Industry 4.0: The future of productivity and growth in manufacturing industries (Vol. 9). Boston Consulting Group.Google Scholar
  34. Waibel, M., Beetz, M., Civera, J., D’Andrea, R., Elfring, J., Galvez-Lopez, D., Haussermann, K., Janssen, R., Montiel, J., Perzylo, A., Schiessle, B., Tenorth, M., Zweigle, O., & Molengraft, R. V. D. (2011). Roboearth: A world wide web for robots. IEEE Robotics and Automation Magazine, 18, 69–82.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Manal Aissam
    • 1
    Email author
  • Mohammed Benbrahim
    • 1
  • Mohammed Nabil Kabbaj
    • 1
  1. 1.Faculty of Science Dhar El MarhrazUniversity of Sidi Mohamed Ben AbdellahFezMorocco

Personalised recommendations