Advertisement

Structural Investigation of Proteins and Protein Complexes by Chemical Cross-Linking/Mass Spectrometry

  • Christine Piotrowski
  • Andrea SinzEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1105)

Abstract

During the last two decades, cross-linking combined with mass spectrometry (MS) has evolved as a valuable tool to gain structural insights into proteins and protein assemblies. Structural information is obtained by introducing covalent connections between amino acids that are in spatial proximity in proteins and protein complexes. The distance constraints imposed by the cross-linking reagent provide information on the three-dimensional arrangement of the covalently connected amino acid residues and serve as basis for de-novo or homology modeling approaches. As cross-linking/MS allows investigating protein 3D-structures and protein-protein interactions not only in-vitro, but also in-vivo, it is especially appealing for studying protein systems in their native environment. In this chapter, we describe the principles of cross-linking/MS and illustrate its value for investigating protein 3D-structures and for unraveling protein interaction networks.

Keywords

Cross-linking Mass spectrometry Protein 3D-structure Protein-protein interactions 

Notes

Acknowledgments

AS acknowledges financial support by the DFG (project Si 867/15-2) and the region of Saxony-Anhalt.

References

  1. Belsom A, Schneider M, Fischer L, Brock O, Rappsilber J (2016) Serum albumin domain structures in human blood serum by mass spectrometry and computational biology. Mol Cell Proteomics 15(3):1105–1116.  https://doi.org/10.1074/mcp.M115.048504 CrossRefPubMedGoogle Scholar
  2. Belsom A, Mudd G, Giese S, Auer M, Rappsilber J (2017) Complementary benzophenone cross-linking/mass spectrometry photochemistry. Anal Chem 89(10):5319–5324.  https://doi.org/10.1021/acs.analchem.6b04938 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Benda C, Ebert J, Scheltema RA, Schiller HB, Baumgartner M, Bonneau F, Mann M, Conti E (2014) Structural model of a CRISPR RNA-silencing complex reveals the RNA-target cleavage activity in Cmr4. Mol Cell 56(1):43–54.  https://doi.org/10.1016/j.molcel.2014.09.002 CrossRefPubMedGoogle Scholar
  4. Bosse K, Haneder S, Arlt C, Ihling CH, Seufferlein T, Sinz A (2016) Mass spectrometry-based secretome analysis of non-small cell lung cancer cell lines. Proteomics 16(21):2801–2814.  https://doi.org/10.1002/pmic.201600297 CrossRefPubMedGoogle Scholar
  5. Brodie NI, Popov KI, Petrotchenko EV, Dokholyan NV, Borchers CH (2017) Solving protein structures using short-distance cross-linking constraints as a guide for discrete molecular dynamics simulations. Sci Adv 3(7):e1700479.  https://doi.org/10.1126/sciadv.1700479 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Corbille AG, Neunlist M, Derkinderen P (2016) Cross-linking for the analysis of alpha-synuclein in the enteric nervous system. J Neurochem 139(5):839–847.  https://doi.org/10.1111/jnc.13845 CrossRefPubMedGoogle Scholar
  7. de Jong L, de Koning EA, Roseboom W, Buncherd H, Wanner MJ, Dapic I, Jansen PJ, van Maarseveen JH, Corthals GL, Lewis PJ, Hamoen LW, de Koster CG (2017) In-culture cross-linking of bacterial cells reveals large-scale dynamic protein-protein interactions at the peptide level. J Proteome Res 16(7):2457–2471.  https://doi.org/10.1021/acs.jproteome.7b00068 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dimova K, Kalkhof S, Pottratz I, Ihling C, Rodriguez-Castaneda F, Liepold T, Griesinger C, Brose N, Sinz A, Jahn O (2009) Structural insights into the calmodulin-Munc13 interaction obtained by cross-linking and mass spectrometry. Biochemistry 48(25):5908–5921.  https://doi.org/10.1021/bi900300r CrossRefPubMedGoogle Scholar
  9. Du X, Chowdhury SM, Manes NP, Wu S, Mayer MU, Adkins JN, Anderson GA, Smith RD (2011) Xlink-identifier: an automated data analysis platform for confident identifications of chemically cross-linked peptides using tandem mass spectrometry. J Proteome Res 10(3):923–931.  https://doi.org/10.1021/pr100848a CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fenyo D (1997) A software tool for the analysis of mass spectrometric disulfide mapping experiments. Comp Appl Biosci CABIOS 13(6):617–618PubMedGoogle Scholar
  11. Fischer L, Chen ZA, Rappsilber J (2013) Quantitative cross-linking/mass spectrometry using isotope-labelled cross-linkers. J Proteome 88:120–128. https://doi.org/10.1016/ j.jprot.2013.03.005 CrossRefGoogle Scholar
  12. Fritzsche R, Ihling CH, Gotze M, Sinz A (2012) Optimizing the enrichment of cross-linked products for mass spectrometric protein analysis. Rap Commun Mass Spectrom 26(6):653–658.  https://doi.org/10.1002/Rcm.6150 CrossRefGoogle Scholar
  13. Gao Q, Xue S, Doneanu CE, Shaffer SA, Goodlett DR, Nelson SD (2006) Pro-CrossLink. Software tool for protein cross-linking and mass spectrometry. Anal Chem 78(7):2145–2149.  https://doi.org/10.1021/ac051339c CrossRefPubMedGoogle Scholar
  14. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141–147.  https://doi.org/10.1038/415141a CrossRefPubMedGoogle Scholar
  15. Giese SH, Belsom A, Rappsilber J (2016a) Optimized fragmentation regime for Diazirine photo-cross-linked peptides. Anal Chem 88(16):8239–8247. https://doi.org/10.1021/ acs.analchem.6b02082 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Giese SH, Fischer L, Rappsilber J (2016b) A study into the collision-induced dissociation (CID) behavior of cross-linked peptides. Mol Cell Proteomics 15(3):1094–1104.  https://doi.org/10.1074/mcp.M115.049296 CrossRefPubMedGoogle Scholar
  17. Götze M, Pettelkau J, Schaks S, Bosse K, Ihling CH, Krauth F, Fritzsche R, Kuhn U, Sinz A (2012a) StavroX--a software for analyzing crosslinked products in protein interaction studies. J Am Soc Mass Spectrom 23(1):76–87.  https://doi.org/10.1007/s13361-011-0261-2 CrossRefPubMedGoogle Scholar
  18. Götze M, Pettelkau J, Schaks S, Bosse K, Ihling CH, Krauth F, Fritzsche R, Kühn U, Sinz A (2012b) StavroX-A software for analyzing crosslinked products in protein interaction studies. J Am Soc Mass Spectrom 23(1):76–87.  https://doi.org/10.1007/s13361-011-0261-2 CrossRefGoogle Scholar
  19. Götze M, Pettelkau J, Fritzsche R, Ihling CH, Schafer M, Sinz A (2015) Automated assignment of MS/MS cleavable cross-links in protein 3D-structure analysis. J Am Soc Mass Spectrom 26(1):83–97.  https://doi.org/10.1007/s13361-014-1001-1 CrossRefPubMedGoogle Scholar
  20. Greber BJ, Boehringer D, Leitner A, Bieri P, Voigts-Hoffmann F, Erzberger JP, Leibundgut M, Aebersold R, Ban N (2014) Architecture of the large subunit of the mammalian mitochondrial ribosome. Nature 505(7484):515–519.  https://doi.org/10.1038/nature12890 CrossRefPubMedGoogle Scholar
  21. Grimm M, Zimniak T, Kahraman A, Herzog F (2015) xVis: a web server for the schematic visualization and interpretation of crosslink-derived spatial restraints. Nucleic Acids Res 43(W1):W362–W369.  https://doi.org/10.1093/nar/gkv463 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Häupl B, Ihling CH, Sinz A (2016) Protein interaction network of human protein kinase D2 revealed by chemical cross-linking/mass spectrometry. J Proteome Res 15:3686–3699.  https://doi.org/10.1021/acs.jproteome.6b00513 CrossRefPubMedGoogle Scholar
  23. Häupl B, Ihling CH, Sinz A (2017) Combining affinity enrichment, cross-linking with photo-amino acids, and mass spectrometry for probing protein kinase D2 interactions. Proteomics.  https://doi.org/10.1002/pmic.201600459 CrossRefGoogle Scholar
  24. Henderson TA, Nilles ML (2017) In vivo photo-cross-linking to study T3S interactions demonstrated using the Yersinia pestis T3S system. Methods Mol Biol 1531:47–60.  https://doi.org/10.1007/978-1-4939-6649-3_4 CrossRefPubMedGoogle Scholar
  25. Hermanson GT (1996) Bioconjugate techniques. Academic, San DiegoGoogle Scholar
  26. Herzog F, Kahraman A, Boehringer D, Mak R, Bracher A, Walzthoeni T, Leitner A, Beck M, Hartl FU, Ban N, Malmstrom L, Aebersold R (2012) Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry. Science 337(6100):1348–1352.  https://doi.org/10.1126/science.1221483 CrossRefPubMedGoogle Scholar
  27. Hetu PO, Ouellet M, Falgueyret JP, Ramachandran C, Robichaud J, Zamboni R, Riendeau D (2008) Photo-crosslinking of proteins in intact cells reveals a dimeric structure of cyclooxygenase-2 and an inhibitor-sensitive oligomeric structure of microsomal prostaglandin E2 synthase-1. Arch Biochem Biophys 477(1):155–162.  https://doi.org/10.1016/j.abb.2008.04.038 CrossRefPubMedGoogle Scholar
  28. Hofmann T, Fischer AW, Meiler J, Kalkhof S (2015) Protein structure prediction guided by crosslinking restraints – a systematic evaluation of the impact of the crosslinking spacer length. Methods 89:79–90.  https://doi.org/10.1016/j.ymeth.2015.05.014 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hoopmann MR, Zelter A, Johnson RS, Riffle M, MacCoss MJ, Davis TN, Moritz RL (2015) Kojak: efficient analysis of chemically cross-linked protein complexes. J Proteome Res 14(5):2190–2198.  https://doi.org/10.1021/pr501321h CrossRefPubMedPubMedCentralGoogle Scholar
  30. Iacobucci C, Reale S, De Angelis F (2013) Photoactivable amino acid bioisosteres and mass spectrometry: snapshots of in vivo 3D protein structures. Chembiochem Eur J Chem Biol 14(2):181–183.  https://doi.org/10.1002/cbic.201200742 CrossRefGoogle Scholar
  31. Iacobucci C, Hage C, Schafer M, Sinz A (2017) A novel MS-cleavable azo cross-linker for peptide structure analysis by free radical initiated peptide sequencing (FRIPS). J Am Soc Mass Spectrom 28:2039–2053.  https://doi.org/10.1007/s13361-017-1744-6 CrossRefPubMedGoogle Scholar
  32. Iacobucci C, Götze M, Piotrowski C, Arlt C, Rehkamp A, Ihling C, Hage C, Sinz A (2018) Carboxyl- and photo-reactive, MS-cleavable cross-linkers: unveiling the real nature of diazirine-based reagents. Anal Chem 90(4):2805–2809Google Scholar
  33. Jaiswal M, Crabtree N, Bauer MA, Hall R, Raney KD, Zybailov BL (2014) XLPM: efficient algorithm for the analysis of protein-protein contacts using chemical cross-linking mass spectrometry. BMC bioinformatics 15 Suppl 11:S16.  https://doi.org/10.1186/1471-2105-15-S11-S16 CrossRefGoogle Scholar
  34. Jumper CC, Bomgarden R, Rogers J, Etienne C, Schriemer DC (2012) High-resolution mapping of carbene-based protein footprints. Anal Chem 84(10):4411–4418. https://doi.org/10.1021/ ac300120z CrossRefPubMedGoogle Scholar
  35. Kalkhof S, Sinz A (2008) Chances and pitfalls of chemical cross-linking with amine-reactive N-hydroxysuccinimide esters. Anal Bioanal Chem 392(1–2):305–312. https://doi.org/ 10.1007/s00216-008-2231-5 CrossRefPubMedGoogle Scholar
  36. Kaufmann KW, Lemmon GH, Deluca SL, Sheehan JH, Meiler J (2010) Practically useful: what the Rosetta protein modeling suite can do for you. Biochemistry 49(14):2987–2998.  https://doi.org/10.1021/bi902153g CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kiosze-Becker K, Ori A, Gerovac M, Heuer A, Nurenberg-Goloub E, Rashid UJ, Becker T, Beckmann R, Beck M, Tampe R (2016) Structure of the ribosome post-recycling complex probed by chemical cross-linking and mass spectrometry. Nat Commun 7:13248.  https://doi.org/10.1038/ncomms13248 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kosinski J, von Appen A, Ori A, Karius K, Muller CW, Beck M (2015) Xlink analyzer: software for analysis and visualization of cross-linking data in the context of three-dimensional structures. J Struct Biol 189(3):177–183.  https://doi.org/10.1016/j.jsb.2015.01.014 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Leitner A, Walzthoeni T, Kahraman A, Herzog F, Rinner O, Beck M, Aebersold R (2010) Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics. Molecular & cellular proteomics : MCP 9(8):1634–1649.  https://doi.org/10.1074/mcp.R000001-MCP201 CrossRefGoogle Scholar
  40. Leitner A, Joachimiak LA, Unverdorben P, Walzthoeni T, Frydman J, Forster F, Aebersold R (2014a) Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes. Proc Natl Acad Sci U S A 111(26):9455–9460.  https://doi.org/10.1073/pnas.1320298111 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Leitner A, Walzthoeni T, Aebersold R (2014b) Lysine-specific chemical cross-linking of protein complexes and identification of cross-linking sites using LC-MS/MS and the xQuest/xProphet software pipeline. Nat Protoc 9(1):120–137.  https://doi.org/10.1038/nprot.2013.168 CrossRefPubMedGoogle Scholar
  42. Leitner A, Faini M, Stengel F, Aebersold R (2016) Crosslinking and mass spectrometry: an integrated technology to understand the structure and function of molecular machines. Trends Biochem Sci 41(1):20–32.  https://doi.org/10.1016/j.tibs.2015.10.008 CrossRefPubMedGoogle Scholar
  43. Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB, Gubbens S, Agard DA, Cheng Y (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10(6):584–590.  https://doi.org/10.1038/nmeth.2472 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lima DB, de Lima TB, Balbuena TS, Neves-Ferreira AGC, Barbosa VC, Gozzo FC, Carvalho PC (2015) SIM-XL: a powerful and user-friendly tool for peptide cross-linking analysis. J Proteome 129:51–55.  https://doi.org/10.1016/j.jprot.2015.01.013 CrossRefGoogle Scholar
  45. Lipstein N, Schaks S, Dimova K, Kalkhof S, Ihling C, Kolbel K, Ashery U, Rhee J, Brose N, Sinz A, Jahn O (2012) Nonconserved Ca2+/calmodulin binding sites in Munc13s differentially control synaptic short-term plasticity. Mol Cell Biol 32(22):4628–4641.  https://doi.org/10.1128/Mcb.00933-12 CrossRefGoogle Scholar
  46. Liu F, Rijkers DT, Post H, Heck AJ (2015) Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry. Nat Methods 12(12):1179–1184.  https://doi.org/10.1038/nmeth.3603 CrossRefPubMedGoogle Scholar
  47. Liu F, Lossl P, Scheltema R, Viner R, Heck AJR (2017) Optimized fragmentation schemes and data analysis strategies for proteome-wide cross-link identification. Nat Commun 8:15473.  https://doi.org/10.1038/ncomms15473 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lössl P, Sinz A (2016) Combining amine-reactive cross-linkers and photo-reactive amino acids for 3D-structure analysis of proteins and protein complexes. Methods Mol Biol 1394:109–127.  https://doi.org/10.1007/978-1-4939-3341-9_9 CrossRefPubMedGoogle Scholar
  49. Lössl P, Kölbel K, Tänzler D, Nannemann D, Ihling CH, Keller MV, Schneider M, Zaucke F, Meiler J, Sinz A (2014) Analysis of Nidogen-1/laminin gamma1 interaction by cross-linking, mass spectrometry, and computational modeling reveals multiple binding modes. PLoS One 9(11):e112886.  https://doi.org/10.1371/journal.pone.0112886 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Maadi H, Nami B, Wang Z (2017) Dimerization assessment of epithelial growth factor family of receptor tyrosine kinases by using cross-linking reagent. Methods Mol Biol 1652:101–108.  https://doi.org/10.1007/978-1-4939-7219-7_6 CrossRefPubMedGoogle Scholar
  51. Mädler S, Bich C, Touboul D, Zenobi R (2009) Chemical cross-linking with NHS esters: a systematic study on amino acid reactivities. J Mass Spectrom 44(5):694–706.  https://doi.org/10.1002/jms.1544 CrossRefPubMedGoogle Scholar
  52. Maupetit J, Derreumaux P, Tuffery P (2009) PEP-FOLD: an online resource for de novo peptide structure prediction. Nucleic acids research 37 (web server issue):W498-503.  https://doi.org/10.1093/nar/gkp323 CrossRefGoogle Scholar
  53. McIlwain S, Tamura K, Kertesz-Farkas A, Grant CE, Diament B, Frewen B, Howbert JJ, Hoopmann MR, Kall L, Eng JK, MacCoss MJ, Noble WS (2014) Crux: rapid open source protein tandem mass spectrometry analysis. J Proteome Res 13(10):4488–4491.  https://doi.org/10.1021/pr500741y CrossRefPubMedPubMedCentralGoogle Scholar
  54. Merkley ED, Rysavy S, Kahraman A, Hafen RP, Daggett V, Adkins JN (2014) Distance restraints from crosslinking mass spectrometry: mining a molecular dynamics simulation database to evaluate lysine-lysine distances. Prot Sci 23(6):747–759.  https://doi.org/10.1002/pro.2458 CrossRefGoogle Scholar
  55. Müller DR, Schindler P, Towbin H, Wirth U, Voshol H, Hoving S, Steinmetz MO (2001) Isotope-tagged cross-linking reagents. A new tool in mass spectrometric protein interaction analysis. Anal Chem 73(9):1927–1934CrossRefGoogle Scholar
  56. Müller MQ, Schafer M, Dreiocker F, Ihling CH, Sinz A (2010) Cleavable cross-linker for protein structure analysis: reliable identification of cross-linking products by tandem MS. Anal Chem 82(16):6958–6968.  https://doi.org/10.1021/ac101241t CrossRefPubMedGoogle Scholar
  57. Nielsen T, Thaysen-Andersen M, Larsen N, Jorgensen FS, Houen G, Hojrup P (2007) Determination of protein conformation by isotopically labelled cross-linking and dedicated software: application to the chaperone, calreticulin. Int J Mass Spectrom 268(2–3):217–226.  https://doi.org/10.1016/j.ijms.2007.06.019 CrossRefGoogle Scholar
  58. Novak P, Kruppa GH (2008) Intra-molecular cross-linking of acidic residues for protein structure studies. Eur J Mass Spectrom 14(6):355–365.  https://doi.org/10.1255/ejms.963 CrossRefGoogle Scholar
  59. Nury C, Redeker V, Dautrey S, Romieu A, van der Rest G, Renard PY, Melki R, Chamot-Rooke J (2015) A novel bio-orthogonal cross-linker for improved protein/protein interaction analysis. Anal Chem 87(3):1853–1860.  https://doi.org/10.1021/ac503892c CrossRefPubMedGoogle Scholar
  60. Operana TN, Tukey RH (2007) Oligomerization of the UDP-glucuronosyltransferase 1A proteins: homo- and heterodimerization analysis by fluorescence resonance energy transfer and co-immunoprecipitation. J Biol Chem 282(7):4821–4829.  https://doi.org/10.1074/jbc.M609417200 CrossRefPubMedGoogle Scholar
  61. Panchaud A, Singh P, Shaffer SA, Goodlett DR (2010) xComb: a cross-linked peptide database approach to protein-protein interaction analysis. J Proteome Res 9(5):2508–2515.  https://doi.org/10.1021/pr9011816 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Petrotchenko EV, Serpa JJ, Hardie DB, Berjanskii M, Suriyamongkol BP, Wishart DS, Borchers CH (2012) Use of proteinase K nonspecific digestion for selective and comprehensive identification of interpeptide cross-links: application to prion proteins. Mol Cell Proteom 11(7):M111 013524.  https://doi.org/10.1074/mcp.M111.013524 CrossRefGoogle Scholar
  63. Petrotchenko EV, Makepeace KA, Borchers CH (2014) DXMSMS match program for automated analysis of LC-MS/MS data obtained using isotopically coded CID-cleavable cross-linking reagents. Curr Prot Bioinform 48:8.18.11–19. doi: https://doi.org/10.1002/0471250953.bi0818s48
  64. Piotrowski C, Ihling CH, Sinz A (2015) Extending the cross-linking/mass spectrometry strategy: facile incorporation of photo-activatable amino acids into the model protein calmodulin in Escherichia coli cells. Methods 89:121–127.  https://doi.org/10.1016/j.ymeth.2015.02.012 CrossRefPubMedGoogle Scholar
  65. Politis A, Stengel F, Hall Z, Hernandez H, Leitner A, Walzthoeni T, Robinson CV, Aebersold R (2014) A mass spectrometry-based hybrid method for structural modeling of protein complexes. Nat Methods 11(4):403–406.  https://doi.org/10.1038/nmeth.2841 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M, Seraphin B (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24(3):218–229.  https://doi.org/10.1006/meth.2001.1183 CrossRefGoogle Scholar
  67. Rampler E, Stranzl T, Orban-Nemeth Z, Hollenstein DM, Hudecz O, Schloegelhofer P, Mechtler K (2015) Comprehensive cross-linking mass spectrometry reveals parallel orientation and flexible conformations of plant HOP2-MND1. J Proteome Res 14(12):5048–5062.  https://doi.org/10.1021/acs.jproteome.5b00903 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Rappsilber J (2011) The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. J Struct Biol 173(3):530–540.  https://doi.org/10.1016/j.jsb.2010.10.014 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Rasmussen MI, Refsgaard JC, Peng L, Houen G, Hojrup P (2011) CrossWork: software-assisted identification of cross-linked peptides. J Proteome 74(10):1871–1883. https://doi.org/10.1016/ j.jprot.2011.04.019 CrossRefGoogle Scholar
  70. Rinner O, Seebacher J, Walzthoeni T, Mueller LN, Beck M, Schmidt A, Mueller M, Aebersold R (2008) Identification of cross-linked peptides from large sequence databases. Nat Methods 5(4):315–318.  https://doi.org/10.1038/nmeth.1192 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Ryu Y, Schultz PG (2006) Efficient incorporation of unnatural amino acids into proteins in Escherichia coli. Nat Methods 3 (4):263–265 nmeth864 [pii]  https://doi.org/10.1038/nmeth864 CrossRefGoogle Scholar
  72. Sarpe V, Rafiei A, Hepburn M, Ostan N, Schryvers AB, Schriemer DC (2016) High sensitivity crosslink detection coupled with integrative structure modeling in the mass spec studio. Mol Cell Proteomics 15(9):3071–3080.  https://doi.org/10.1074/mcp.O116.058685 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Schilling B, Row RH, Gibson BW, Guo X, Young MM (2003) MS2Assign, automated assignment and nomenclature of tandem mass spectra of chemically crosslinked peptides. J Am Soc Mass Spectrom 14(8):834–850.  https://doi.org/10.1016/S1044-0305(03)00327-1 CrossRefPubMedGoogle Scholar
  74. Schmidt R, Sinz A (2017) Improved single-step enrichment methods of cross-linked products for protein structure analysis and protein interaction mapping. Anal Bioanal Chem 409(9):2393–2400.  https://doi.org/10.1007/s00216-017-0185-1 CrossRefPubMedGoogle Scholar
  75. Schmidt A, Kalkhof S, Ihling C, Cooper DM, Sinz A (2005) Mapping protein interfaces by chemical cross-linking and Fourier transform ion cyclotron resonance mass spectrometry: application to a calmodulin/adenylyl cyclase 8 peptide complex. Eur J Mass Spectrom 11(5):525–534.  https://doi.org/10.1255/ejms.748 CrossRefGoogle Scholar
  76. Schwarz R, Tanzler D, Ihling CH, Sinz A (2016) Monitoring solution structures of peroxisome proliferator-activated receptor beta/delta upon ligand binding. PLoS One 11(3):e0151412.  https://doi.org/10.1371/journal.pone.0151412 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Schweppe DK, Chavez JD, Lee CF, Caudal A, Kruse SE, Stuppard R, Marcinek DJ, Shadel GS, Tian R, Bruce JE (2017) Mitochondrial protein interactome elucidated by chemical cross-linking mass spectrometry. Proc Natl Acad Sci U S A 114(7):1732–1737.  https://doi.org/10.1073/pnas.1617220114 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Sinz A (2006) Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein-protein interactions. Mass Spectrom Rev 25(4):663–682. https://doi.org/ 10.1002/mas.20082 CrossRefPubMedGoogle Scholar
  79. Sinz A (2014) The advancement of chemical cross-linking and mass spectrometry for structural proteomics: from single proteins to protein interaction networks. Expert Rev Proteomics 11(6):733–743.  https://doi.org/10.1586/14789450.2014.960852 CrossRefPubMedGoogle Scholar
  80. Sinz A (2017) Divide and conquer: cleavable cross-linkers to study protein conformation and protein-protein interactions. Anal Bioanal Chem 409(1):33–44.  https://doi.org/10.1007/s00216-016-9941-x CrossRefPubMedGoogle Scholar
  81. Soderberg CA, Lambert W, Kjellstrom S, Wiegandt A, Wulff RP, Mansson C, Rutsdottir G, Emanuelsson C (2012) Detection of crosslinks within and between proteins by LC-MALDI-TOFTOF and the software FINDX to reduce the MSMS-data to acquire for validation. PLoS One 7(6):e38927.  https://doi.org/10.1371/journal.pone.0038927 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Speers AE, Cravatt BF (2005) A tandem orthogonal proteolysis strategy for high-content chemical proteomics. J Am Chem Soc 127(28):10018–10019.  https://doi.org/10.1021/ja0532842 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Suchanek M, Radzikowska A, Thiele C (2005) Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells. Nat Methods 2(4):261–267.  https://doi.org/10.1038/nmeth752 CrossRefPubMedGoogle Scholar
  84. Tan D, Li Q, Zhang MJ, Liu C, Ma C, Zhang P, Ding YH, Fan SB, Tao L, Yang B, Li X, Ma S, Liu J, Feng B, Liu X, Wang HW, He SM, Gao N, Ye K, Dong MQ, Lei X (2016) Trifunctional cross-linker for mapping protein-protein interaction networks and comparing protein conformational states. eLife 5.  https://doi.org/10.7554/eLife.12509
  85. Tang X, Bruce JE (2010) A new cross-linking strategy: protein interaction reporter (PIR) technology for protein-protein interaction studies. Mol BioSyst 6(6):939–947.  https://doi.org/10.1039/b920876c CrossRefPubMedPubMedCentralGoogle Scholar
  86. Tang Y, Chen Y, Lichti CF, Hall RA, Raney KD, Jennings SF (2005) CLPM: a cross-linked peptide mapping algorithm for mass spectrometric analysis. BMC bioinformatics 6 Suppl 2:S9.  https://doi.org/10.1186/1471-2105-6-S2-S9 CrossRefGoogle Scholar
  87. Tinnefeld V, Venne AS, Sickmann A, Zahedi RP (2017) Enrichment of cross-linked peptides using charge-based fractional diagonal chromatography (ChaFRADIC). J Proteome Res 16:459–469.  https://doi.org/10.1021/acs.jproteome.6b00587 CrossRefPubMedGoogle Scholar
  88. Walker-Gray R, Stengel F, Gold MG (2017) Mechanisms for restraining cAMP-dependent protein kinase revealed by subunit quantitation and cross-linking approaches. Proc Natl Acad Sci U S A 114(39):10414–10419.  https://doi.org/10.1073/pnas.1701782114 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Walzthoeni T, Leitner A, Stengel F, Aebersold R (2013) Mass spectrometry supported determination of protein complex structure. Curr Opin Struct Biol 23(2):252–260.  https://doi.org/10.1016/j.sbi.2013.02.008 CrossRefPubMedGoogle Scholar
  90. Walzthoeni T, Joachimiak LA, Rosenberger G, Rost HL, Malmstrom L, Leitner A, Frydman J, Aebersold R (2015) xTract: software for characterizing conformational changes of protein complexes by quantitative cross-linking mass spectrometry. Nat Methods 12(12):1185–1190.  https://doi.org/10.1038/nmeth.3631 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Weerapana E, Speers AE, Cravatt BF (2007) Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)--a general method for mapping sites of probe modification in proteomes. Nat Protoc 2(6):1414–1425.  https://doi.org/10.1038/nprot.2007.194 CrossRefPubMedGoogle Scholar
  92. Weisbrod CR, Chavez JD, Eng JK, Yang L, Zheng C, Bruce JE (2013) In vivo protein interaction network identified with a novel real-time cross-linked peptide identification strategy. J Proteome Res 12(4):1569–1579.  https://doi.org/10.1021/pr3011638 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Weisz DA, Liu H, Zhang H, Thangapandian S, Tajkhorshid E, Gross ML, Pakrasi HB (2017) Mass spectrometry-based cross-linking study shows that the Psb28 protein binds to cytochrome b559 in photosystem II. Proc Natl Acad Sci U S A 114(9):2224–2229.  https://doi.org/10.1073/pnas.1620360114 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Wittelsberger A, Thomas BE, Mierke DF, Rosenblatt M (2006) Methionine acts as a “magnet” in photoaffinity crosslinking experiments. Febs Lett 580(7):1872–1876.  https://doi.org/10.1016/j.febslet.2006.02.050 CrossRefGoogle Scholar
  95. Xu H, Zhang L, Freitas MA (2008) Identification and characterization of disulfide bonds in proteins and peptides from tandem MS data by use of the MassMatrix MS/MS search engine. J Proteome Res 7(1):138–144.  https://doi.org/10.1021/pr070363z CrossRefPubMedGoogle Scholar
  96. Yang B, Wu YJ, Zhu M, Fan SB, Lin J, Zhang K, Li S, Chi H, Li YX, Chen HF, Luo SK, Ding YH, Wang LH, Hao Z, Xiu LY, Chen S, Ye K, He SM, Dong MQ (2012) Identification of cross-linked peptides from complex samples. Nat Methods 9(9):904–906.  https://doi.org/10.1038/nmeth.2099 CrossRefPubMedGoogle Scholar
  97. Yang Y, Song H, Chen PR (2016a) Genetically encoded photocrosslinkers for identifying and mapping protein-protein interactions in living cells. IUBMB Life 68(11):879–886.  https://doi.org/10.1002/iub.1560 CrossRefPubMedGoogle Scholar
  98. Yang Y, Song H, He D, Zhang S, Dai S, Lin S, Meng R, Wang C, Chen PR (2016b) Genetically encoded protein photocrosslinker with a transferable mass spectrometry-identifiable label. Nat Commun 7:12299.  https://doi.org/10.1038/ncomms12299 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Yilmaz S, Drepper F, Hulstaert N, Cernic M, Gevaert K, Economou A, Warscheid B, Martens L, Vandermarliere E (2016) Xilmass: a new approach toward the identification of cross-linked peptides. Anal Chem 88(20):9949–9957.  https://doi.org/10.1021/acs.analchem.6b01585 CrossRefPubMedGoogle Scholar
  100. Young MM, Tang N, Hempel JC, Oshiro CM, Taylor EW, Kuntz ID, Gibson BW, Dollinger G (2000) High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry. Proc Natl Acad Sci U S A 97(11):5802–5806.  https://doi.org/10.1073/pnas.090099097 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Yu F, Li N, Yu W (2016) ECL: an exhaustive search tool for the identification of cross-linked peptides using whole database. BMC Bioinform 17(1):217. https://doi.org/10.1186/ s12859-016-1073-y CrossRefGoogle Scholar
  102. Yu F, Li N, Yu W (2017) Exhaustively identifying cross-linked peptides with a linear computational complexity. J Proteome Res 16(10):3942–3952. https://doi.org/10.1021/ acs.jproteome.7b00338 CrossRefPubMedGoogle Scholar
  103. Zhang Y (2009) I-TASSER: fully automated protein structure prediction in CASP8. Proteins 77(Suppl 9):100–113.  https://doi.org/10.1002/prot.22588 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Zheng C, Weisbrod CR, Chavez JD, Eng JK, Sharma V, Wu X, Bruce JE (2013) XLink-DB: database and software tools for storing and visualizing protein interaction topology data. J Proteome Res 12(4):1989–1995.  https://doi.org/10.1021/pr301162j CrossRefPubMedPubMedCentralGoogle Scholar
  105. Ziemianowicz DS, Bomgarden R, Etienne C, Schriemer DC (2017) Amino acid insertion frequencies arising from photoproducts generated using aliphatic Diazirines. J Am Soc Mass Spectrom 28:2011–2021.  https://doi.org/10.1007/s13361-017-1730-z CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Pharmaceutical Chemistry & Bioanalytics, Institute of PharmacyMartin Luther University Halle-WittenbergHalle (Saale)Germany

Personalised recommendations