Current Solution NMR Techniques for Structure-Function Studies of Proteins and RNA Molecules

  • John L. MarkleyEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1105)


We briefly review current technology for structure-function investigations of biological macromolecules in solution by nuclear magnetic resonance spectroscopy, which enable hybrid methods. An advantage of NMR is that biomolecules can be studied at atomic resolution under near physiological conditions where they are dynamically active. We outline stable isotope labeling strategies, NMR data collection methodology, and procedures for data analysis leading to structure-function information. We discuss issues related to NMR software and data deposition.


Dynamics Stable isotope labeling NMR data collection strategies NMR observables Spectral assignment Structural restraints NMR software packages Validation of NMR results Functional studies Data deposition 


  1. Alderson TR, Charlier C, Torchia DA, Anfinrud P, Bax A (2017) Monitoring hydrogen exchange during protein folding by fast pressure jump NMR spectroscopy. J Am Chem Soc 139(32):11036–11039. PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bahrami A, Assadi AH, Markley JL, Eghbalnia HR (2009) Probabilistic interaction network of evidence algorithm and its application to complete labeling of peak lists from protein NMR spectroscopy. PLoS Comput Biol 5(3):e1000307. PubMedPubMedCentralCrossRefGoogle Scholar
  3. Balayssac S, Bertini I, Luchinat C, Parigi G, Piccioli M (2006) 13C direct detected NMR increases the detectability of residual dipolar couplings. J Am Chem Soc 128(47):15042–15043PubMedCrossRefGoogle Scholar
  4. Barrett PJ, Chen J, Cho MK, Kim JH, Lu Z, Mathew S, Peng D, Song Y, Van Horn WD, Zhuang T, Sonnichsen FD, Sanders CR (2013) The quiet renaissance of protein nuclear magnetic resonance. Biochemistry 52(8):1303–1320. PubMedPubMedCentralCrossRefGoogle Scholar
  5. Berjanskii MV, Wishart DS (2008) Application of the random coil index to studying protein flexibility. J Biomol NMR 40(1):31–48PubMedCrossRefGoogle Scholar
  6. Berjanskii MV, Wishart DS (2013) A simple method to measure protein side-chain mobility using NMR chemical shifts. J Am Chem Soc 135(39):14536–14539. PubMedCrossRefGoogle Scholar
  7. Berman HM, Henrick K, Nakamura H, Markley JL (2009) The worldwide protein data bank. In: Gu J, Bourne P (eds) Structural bioinformatics, 2nd edn. Wiley, Chicester, pp 293–303Google Scholar
  8. Bermel W, Bertini I, Felli IC, Kummerle R, Pierattelli R (2006) Novel 13C direct detection experiments, including extension to the third dimension, to perform the complete assignment of proteins. J Magn Reson 178(1):56–64PubMedCrossRefGoogle Scholar
  9. Billeter M (2017) Non-uniform sampling in biomolecular NMR. J Biomol NMR 68(2):65–66. PubMedCrossRefGoogle Scholar
  10. Cai K, Liu G, Frederick RO, Xiao R, Montelione GT, Markley JL (2016) Structural/functional properties of human NFU1, an intermediate [4Fe-4S] carrier in human mitochondrial iron-sulfur cluster biogenesis. Structure 24(12):2080–2091. PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cantero-Camacho A, Fan L, Wang YX, Gallego J (2017) Three-dimensional structure of the 3’X-tail of hepatitis C virus RNA in monomeric and dimeric states. RNA 23:1465–1476. PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chan TM, Markley JL (1982) Heteronuclear (1H, 13C) two-dimensional chemical shift correlation NMR spectroscopy of a protein. Ferredoxin from Anabaena variabilis. J Am Chem Soc 104:4010–4011CrossRefGoogle Scholar
  13. Chao FA, Shi L, Masterson LR, Veglia G (2011) FLAMEnGO: a fuzzy logic approach for methyl group assignment using NOESY and paramagnetic relaxation enhancement data. J Magn Reson 214:103–110. PubMedPubMedCentralCrossRefGoogle Scholar
  14. Clore GM, Gronenborn AM, Tjandra N (1998) Direct structure refinement against residual dipolar couplings in the presence of Rhombicity of unknown magnitude. J Magn Reson 131(1):159–162PubMedCrossRefGoogle Scholar
  15. Cordier F, Grzesiek S (1999) Direct observation of hydrogen bonds in proteins by Interresidue 3HJNC′ scalar couplings. J Am Chem Soc 121(7):1601–1602CrossRefGoogle Scholar
  16. Cornilescu G, Hu JS, Bax A (1999) Identification of the hydrogen bonding network in a protein by scalar couplings. J Am Chem Soc 121(12):2949–2950CrossRefGoogle Scholar
  17. Cornilescu G, Didychuk AL, Rodgers ML, Michael LA, Burke JE, Montemayor EJ, Hoskins AA, Butcher SE (2016) Structural analysis of multi-helical RNAs by NMR-SAXS/WAXS: application to the U4/U6 di-snRNA. J Mol Biol 428(5 Pt A):777–789. PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cuniasse P, Tavares P, Orlova EV, Zinn-Justin S (2017) Structures of biomolecular complexes by combination of NMR and cryoEM methods. Curr Opin Struct Biol 43:104–113. CrossRefGoogle Scholar
  19. Dashti H, Tonelli M, Lee W, Westler WM, Cornilescu G, Ulrich EL, Markley JL (2016) Probabilistic validation of protein NMR chemical shift assignments. J Biomol NMR 64(1):17–25. doi: 10.1007/s10858-015-0007-8 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPIPE – a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293PubMedCrossRefGoogle Scholar
  21. Denisov IG, Grinkova YV, Lazarides AA, Sligar SG (2004) Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J Am Chem Soc 126(11):3477–3487PubMedCrossRefGoogle Scholar
  22. Douglas SM, Chou JJ, Shih WM (2007) DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc Natl Acad Sci U S A 104(16):6644–6648. CrossRefGoogle Scholar
  23. Eghbalnia HR, Markley JL (2017) Chapter 5 acquisition and post-processing of reduced dimensionality NMR experiments. In: Fast NMR data acquisition: beyond the Fourier transform. The Royal Society of Chemistry, pp 96-118.
  24. Eghbalnia HR, Bahrami A, Tonelli M, Hallenga K, Markley JL (2005a) High-resolution iterative frequency identification for NMR as a general strategy for multidimensional data collection. J Am Chem Soc 127(36):12528–12536PubMedPubMedCentralCrossRefGoogle Scholar
  25. Eghbalnia HR, Wang L, Bahrami A, Assadi A, Markley JL (2005b) Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements. J Biomol NMR 32(1):71–81PubMedCrossRefGoogle Scholar
  26. Fitzgerald PMD, Westbrook JD, Bourne PE, McMahon B, Watenpaugh KD, Berman HM (2005) 4.5 macromolecular dictionary (mmCIF). In: Hall SR, McMahon B (eds) International tables for crystallography G. Definition and exchange of crystallographic data. Springer, Dodrecht, pp 295–443Google Scholar
  27. Fitzkee NC, Bax A (2010) Facile measurement of (1)H-(1)5N residual dipolar couplings in larger perdeuterated proteins. J Biomol NMR 48(2):65–70. PubMedPubMedCentralCrossRefGoogle Scholar
  28. Gal M, Edmonds KA, Milbradt AG, Takeuchi K, Wagner G (2011) Speeding up direct (15)N detection: hCaN 2D NMR experiment. J Biomol NMR 51(4):497–504. PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gayathri C, Tsarevsky NV, Gil RR (2010) Residual dipolar couplings (RDCs) analysis of small molecules made easy: fast and tuneable alignment by reversible compression/relaxation of reusable PMMA Gels. Chemistry (Easton) 16(12):3622–3626. CrossRefGoogle Scholar
  30. Güntert P (2004) Automated NMR structure calculation with CYANA. Methods Mol Biol 278:353–378PubMedGoogle Scholar
  31. Gutmanas A, Adams PD, Bardiaux B, Berman HM, Case DA, Fogh RH, Guntert P, Hendrickx PM, Herrmann T, Kleywegt GJ, Kobayashi N, Lange OF, Markley JL, Montelione GT, Nilges M, Ragan TJ, Schwieters CD, Tejero R, Ulrich EL, Velankar S, Vranken WF, Wedell JR, Westbrook J, Wishart DS, Vuister GW (2015) NMR exchange format: a unified and open standard for representation of NMR restraint data. Nat Struct Mol Biol 22(6):433–434. PubMedPubMedCentralCrossRefGoogle Scholar
  32. Habeck M (2017) Bayesian modeling of biomolecular assemblies with Cryo-EM maps. Front Mol Biosci 4:15. PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hall SR (1991) The STAR file: a new format for electronic data transfer and archiving. J Chem Inform Comput Sci 31:326–333CrossRefGoogle Scholar
  34. Hall SR, Cook APF (1995) STAR dictionary definition language: initial specification. J Chem Inform Comput Sci 35:819–825CrossRefGoogle Scholar
  35. Hall SR, Spadaccini N (1994) The STAR file: detailed specifications. J Chem Inform Comput Sci 34:505–508CrossRefGoogle Scholar
  36. Hall SR, Allen FH, Brown ID (1991) The crystallographic information file (CIF): a new standard archive file for crystallography. Acta Cryst A47:655–685CrossRefGoogle Scholar
  37. Hansen MR, Mueller L, Pardi A (1998) Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat Struct Biol 5(12):1065–1074PubMedCrossRefGoogle Scholar
  38. Hewitt L, McDonnell JM (2004) Screening and optimizing protein production in E. coli. Methods Mol Biol 278:1–16. PubMedCrossRefGoogle Scholar
  39. Hiller S, Wider G, Wuthrich K (2008) APSY-NMR with proteins: practical aspects and backbone assignment. J Biomol NMR 42(3):179–195PubMedCrossRefGoogle Scholar
  40. Hyberts SG, Arthanari H, Wagner G (2011) Applications of non-uniform sampling and processing. Top Curr Chem. Google Scholar
  41. Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol Biol 278:313–352PubMedGoogle Scholar
  42. Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Mei Ono A, Güntert P (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440(7080):52–57PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kay LE (2016) New views of functionally dynamic proteins by solution NMR spectroscopy. J Mol Biol 428(2 Pt A):323–331. PubMedCrossRefGoogle Scholar
  44. Khirich G, Loria JP (2015) Complexity of protein energy landscapes studied by solution NMR relaxation dispersion experiments. J Phys Chem B 119(9):3743–3754. PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kigawa T, Matsuda T, Yabuki T, Yokoyama S (eds) (2007) Bacterial cell-free system for highly efficient protein synthesis. Cell-free protein synthesis: methods and protocols, October, 2007 edn. Wiley-VCH, WeinheimGoogle Scholar
  46. Kneller DG, Kuntz ID (1993) UCSF SPARKY – an NMR display, annotation and assignment tool. J Cell Biochem Suppl 17C:254–254Google Scholar
  47. Koradi R, Billeter M, Engeli M, Guntert P, Wüthrich K (1998) Automated peak picking and peak integration in macromolecular NMR spectra using AUTOPSY. J Magn Reson 135(2):288–297PubMedCrossRefGoogle Scholar
  48. Kost TA, Condreay JP, Jarvis DL (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23(5):567–575. PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kovacs H, Moskau D, Spraul M (2005) Cryogenically cooled probes – a leap in NMR technology. Prog Nucl Magn Reson Spectrosc 46(2–3):131–155. CrossRefGoogle Scholar
  50. Krahenbuhl B, El Bakkali I, Schmidt E, Guntert P, Wider G (2014) Automated NMR resonance assignment strategy for RNA via the phosphodiester backbone based on high-dimensional through-bond APSY experiments. J Biomol NMR 59(2):87–93. PubMedCrossRefGoogle Scholar
  51. Kupce E, Freeman R (2003) Projection-reconstruction of three-dimensional NMR spectra. J Am Chem Soc 125(46):13958–13959. PubMedCrossRefGoogle Scholar
  52. Lange OF, Rossi P, Sgourakis NG, Song Y, Lee HW, Aramini JM, Ertekin A, Xiao R, Acton TB, Montelione GT, Baker D (2012) Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples. Proc Natl Acad Sci U S A 109(27):10873–10878. PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lee W, Markley JL (2018) PINE-SPARKY.2 for automated NMR-based protein structure research. Bioinformatics 34(9):1586–1588PubMedCentralCrossRefGoogle Scholar
  54. Lee W, Bahrami A, Markley JL (2013a) ADAPT-NMR enhancer: complete package for reduced dimensionality in protein NMR spectroscopy. Bioinformatics 29(4):515–517. PubMedCrossRefGoogle Scholar
  55. Lee W, Hu K, Tonelli M, Bahrami A, Neuhardt E, Glass KC, Markley JL (2013b) Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers. J Magn Reson 236:83–88. PubMedCrossRefGoogle Scholar
  56. Lee W, Stark JL, Markley JL (2014) PONDEROSA-C/S: client-server based software package for automated protein 3D structure determination. J Biomol NMR 60(2–3):73–75. doi: 10.1007/s10858-014-9855-x PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31(8):1325–1327. PubMedCrossRefGoogle Scholar
  58. Lee W, Cornilescu G, Dashti H, Eghbalnia HR, Tonelli M, Westler WM, Butcher SE, Henzler-Wildman KA, Markley JL (2016) Integrative NMR for biomolecular research. J Biomol NMR 64(4):307–332. PubMedPubMedCentralCrossRefGoogle Scholar
  59. Liang B, Tamm LK (2016) NMR as a tool to investigate the structure, dynamics and function of membrane proteins. Nat Struct Mol Biol 23(6):468–474. PubMedPubMedCentralCrossRefGoogle Scholar
  60. Linser R (2017) Solid-state NMR spectroscopic trends for supramolecular assemblies and protein aggregates. Solid State Nucl Magn Reson 87:45–53. PubMedCrossRefGoogle Scholar
  61. Lipchock JM, Loria JP (2009) Monitoring molecular interactions by NMR. Methods Mol Biol 490:115–134. PubMedCrossRefGoogle Scholar
  62. Lisi GP, Loria JP (2017) Allostery in enzyme catalysis. Curr Opin Struct Biol 47:123–130. PubMedCrossRefGoogle Scholar
  63. Lorieau JL (2017) Mollib: a molecular and NMR data analysis software. J Biomol NMR 69(2):69–80. PubMedCrossRefGoogle Scholar
  64. Maciejewski MW, Schuyler AD, Gryk MR, Moraru II, Romero PR, Ulrich EL, Eghbalnia HR, Livny M, Delaglio F, Hoch JC (2017) NMRbox: a resource for biomolecular NMR computation. Biophys J 112(8):1529–1534. PubMedPubMedCentralCrossRefGoogle Scholar
  65. Mackay JP, Landsberg MJ, Whitten AE, Bond CS (2017) Whaddaya know: a guide to uncertainty and subjectivity in structural biology. Trends Biochem Sci 42(2):155–167. PubMedCrossRefGoogle Scholar
  66. Makino S, Beebe ET, Markley JL, Fox BG (2014) Cell-free protein synthesis for functional and structural studies. Methods Mol Biol 1091:161–178. PubMedCrossRefGoogle Scholar
  67. Mao B, Tejero R, Baker D, Montelione GT (2014) Protein NMR structures refined with Rosetta have higher accuracy relative to corresponding X-ray crystal structures. J Am Chem Soc 136(5):1893–1906. PubMedPubMedCentralCrossRefGoogle Scholar
  68. Markley JL, Aceti DJ, Bingman CA, Fox BG, Frederick RO, Makino S, Nichols KW, Phillips GN Jr, Primm JG, Sahu SC, Vojtik FC, Volkman BF, Wrobel RL, Zolnai Z (2009) The center for eukaryotic structural genomics. J Struct Funct Genom 10(2):165–179. CrossRefGoogle Scholar
  69. Matei E, Gronenborn AM (2015) F paramagnetic relaxation enhancement: a valuable tool for distance measurements in proteins. Angew Chem Int Ed Engl 55:150–154. PubMedPubMedCentralCrossRefGoogle Scholar
  70. Matthews S (2004) Perdeuteration/site-specific protonation approaches for high-molecular-weight proteins. Methods MolBiol 278:35–45Google Scholar
  71. McFeeters RL, Fowler CA, Gaponenko VV, Byrd RA (2005) Efficient and precise measurement of H(alpha)-C(alpha), C(alpha)-C, C(alpha)-C(beta) and H(N)-N residual dipolar couplings from 2D H(N)-N correlation spectra. J Biomol NMR 31(1):35–47. PubMedCrossRefGoogle Scholar
  72. Mertens HDT, Svergun DI (2017) Combining NMR and small angle X-ray scattering for the study of biomolecular structure and dynamics. Arch Biochem Biophys 628:33–41. PubMedPubMedCentralCrossRefGoogle Scholar
  73. Metz G, Howard KP, Vanliemt WBS, Prestegard JH, Lugtenburg J, Smith SO (1995) Nmr-studies of ubiquinone location in oriented model membranes – evidence for a single Motionally-averaged population. J am Chem Soc 117 (1):564-565. DOI:DOI.
  74. Molugu TR, Lee S, Brown MF (2017) Concepts and methods of solid-state NMR spectroscopy applied to biomembranes. Chem Rev 117(19):12087–12132. PubMedCrossRefGoogle Scholar
  75. Montelione GT, Nilges M, Bax A, Guntert P, Herrmann T, Richardson JS, Schwieters CD, Vranken WF, Vuister GW, Wishart DS, Berman HM, Kleywegt GJ, Markley JL (2013) Recommendations of the wwPDB NMR validation task force. Structure 21(9):1563–1570. PubMedPubMedCentralCrossRefGoogle Scholar
  76. Nasr ML, Baptista D, Strauss M, Sun ZJ, Grigoriu S, Huser S, Pluckthun A, Hagn F, Walz T, Hogle JM, Wagner G (2017) Covalently circularized nanodiscs for studying membrane proteins and viral entry. Nat Methods 14(1):49–52. PubMedCrossRefGoogle Scholar
  77. Ortiz-Polo G, Krishnamoorthi R, Markley JL, Live DH, Davis DG, Cowburn D (1986) Natural-abundance 15N NMR studies of Turkey Ovomucoid third domain. Assignment of peptide 15N resonances to the residues at the reactive site region via proton-detected multiple-quantum coherence. J Magn Reson 68:303–310Google Scholar
  78. Ovchinnikov S, Park H, Varghese N, Huang PS, Pavlopoulos GA, Kim DE, Kamisetty H, Kyrpides NC, Baker D (2017) Protein structure determination using metagenome sequence data. Science 355(6322):294–298. PubMedPubMedCentralCrossRefGoogle Scholar
  79. Palmer AG III, Kroenke CD, Loria JP (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol 339:204–238PubMedCrossRefGoogle Scholar
  80. Perilla JR, Zhao G, Lu M, Ning J, Hou G, Byeon IL, Gronenborn AM, Polenova T, Zhang P (2017) CryoEM structure refinement by integrating NMR chemical shifts with molecular dynamics simulations. J Phys Chem B 121(15):3853–3863. PubMedPubMedCentralCrossRefGoogle Scholar
  81. Pervushin K, Riek R, Wider G, Wüthrich K (1998) Transverse relaxation-optimized spectroscoppy (TROSY) for NMR studies of aromatic spin systems in 13C-labeled proteins. J Am Chem Soc 120:6394–6400CrossRefGoogle Scholar
  82. Pickford AR, O’Leary JM (2004) Isotopic labeling of recombinant proteins from the methylotrophic yeast Pichia pastoris. Methods Mol Biol 278:17–33PubMedGoogle Scholar
  83. Pilla KB, Gaalswyk K, MacCallum JL (2017a) Molecular modelling of biomolecules by paramagnetic NMR and computational hybrid methods. Biochim Biophys Acta 1865:1654–1663. CrossRefGoogle Scholar
  84. Pilla KB, Otting G, Huber T (2017b) 3D computational modeling of proteins using sparse paramagnetic NMR data. Methods Mol Biol 1526:3–21. PubMedCrossRefGoogle Scholar
  85. Pritisanac I, Degiacomi MT, Alderson TR, Carneiro MG, Ab E, Siegal G, Baldwin AJ (2017) Automatic assignment of methyl-NMR spectra of supramolecular machines using graph theory. J Am Chem Soc 139(28):9523–9533. PubMedCrossRefGoogle Scholar
  86. Rajesh S, Nietlispach D, Nakayama H, Takio K, Laue ED, Shibata T, Ito Y (2003) A novel method for the biosynthesis of deuterated proteins with selective protonation at the aromatic rings of Phe, Tyr and Trp. J Biomol NMR 27(1):81–86PubMedCrossRefGoogle Scholar
  87. Rajesh S, Overduin M, Bonev BB (2016) NMR of membrane proteins: beyond crystals. Adv Exp Med Biol 922:29–42. PubMedCrossRefGoogle Scholar
  88. Ramelot TA, Raman S, Kuzin AP, Xiao R, Ma LC, Acton TB, Hunt JF, Montelione GT, Baker D, Kennedy MA (2009) Improving NMR protein structure quality by Rosetta refinement: a molecular replacement study. Proteins 75(1):147–167CrossRefGoogle Scholar
  89. Rosato A, Aramini JM, Arrowsmith C, Bagaria A, Baker D, Cavalli A, Doreleijers JF, Eletsky A, Giachetti A, Guerry P, Gutmanas A, Guntert P, He Y, Herrmann T, Huang YJ, Jaravine V, Jonker HR, Kennedy MA, Lange OF, Liu G, Malliavin TE, Mani R, Mao B, Montelione GT, Nilges M, Rossi P, van der Schot G, Schwalbe H, Szyperski TA, Vendruscolo M, Vernon R, Vranken WF, Vries S, Vuister GW, Wu B, Yang Y, Bonvin AM (2012) Blind testing of routine, fully automated determination of protein structures from NMR data. Structure 20(2):227–236. PubMedPubMedCentralCrossRefGoogle Scholar
  90. Rosenzweig R, Kay LE (2016) Solution NMR spectroscopy provides an avenue for the study of functionally dynamic molecular machines: the example of protein disaggregation. J Am Chem Soc 138(5):1466–1477. PubMedCrossRefGoogle Scholar
  91. Salzmann M, Pervushin KV, Wider G, Senn H, Wüthrich K (1998) TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc Nat Acad Sci USA 95(23):13585–13590PubMedCrossRefGoogle Scholar
  92. Schmidt E, Güntert P (2012) A new algorithm for reliable and general NMR resonance assignment. J Am Chem Soc 134(30):12817–12829. PubMedCrossRefGoogle Scholar
  93. Schnieders R, Richter C, Warhaut S, de Jesus V, Keyhani S, Duchardt-Ferner E, Keller H, Wohnert J, Kuhn LT, Breeze AL, Bermel W, Schwalbe H, Furtig B (2017) Evaluation of 15N-detected H-N correlation experiments on increasingly large RNAs. J Biomol NMR 69:31–44. PubMedCrossRefGoogle Scholar
  94. Schwieters CD, Bermejo GA, Clore GM (2017) Xplor-NIH for molecular structure determination from NMR and other data sources. Protein Sci 27:26–40. PubMedPubMedCentralCrossRefGoogle Scholar
  95. Sekhar A, Kay LE (2013) NMR paves the way for atomic level descriptions of sparsely populated, transiently formed biomolecular conformers. Proc Natl Acad Sci U S A 110(32):12867–12874. PubMedPubMedCentralCrossRefGoogle Scholar
  96. Sharaf NG, Gronenborn AM (2015) (19)F-modified proteins and (19)F-containing ligands as tools in solution NMR studies of protein interactions. Methods Enzymol 565:67–95. PubMedCrossRefGoogle Scholar
  97. Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56(3):227–241. PubMedPubMedCentralCrossRefGoogle Scholar
  98. Shen Y, Bax A (2015) Homology modeling of larger proteins guided by chemical shifts. Nat Methods 12(8):747–750. PubMedPubMedCentralCrossRefGoogle Scholar
  99. Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu G, Eletsky A, Wu Y, Singarapu KK, Lemak A, Ignatchenko A, Arrowsmith CH, Szyperski T, Montelione GT, Baker D, Bax A (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci U S A 105(12):4685–4690. PubMedPubMedCentralCrossRefGoogle Scholar
  100. Shin J, Lee W, Lee W (2008) Structural proteomics by NMR spectroscopy. Expert Rev Proteomics 5(4):589–601. PubMedCrossRefGoogle Scholar
  101. Stanek J, Augustyniak R, Kozminski W (2012) Suppression of sampling artefacts in high-resolution four-dimensional NMR spectra using signal separation algorithm. J Magn Reson 214(1):91–102. PubMedCrossRefGoogle Scholar
  102. Takeda M, Kainosho M (2012) Cell-free protein production for NMR studies. Methods Mol Biol 831:71–84. PubMedCrossRefGoogle Scholar
  103. Takeuchi K, Sun ZY, Wagner G (2008) Alternate 13C-12C labeling for complete mainchain resonance assignments using C alpha direct-detection with applicability toward fast relaxing protein systems. J Am Chem Soc 130(51):17210–17211. PubMedPubMedCentralCrossRefGoogle Scholar
  104. Takeuchi K, Heffron G, Sun ZY, Frueh DP, Wagner G (2010) Nitrogen-detected CAN and CON experiments as alternative experiments for main chain NMR resonance assignments. J Biomol NMR 47(4):271–282. PubMedPubMedCentralCrossRefGoogle Scholar
  105. Takeuchi K, Arthanari H, Shimada I, Wagner G (2015) Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR. J Biomol NMR 63(4):323–331. PubMedPubMedCentralCrossRefGoogle Scholar
  106. Takeuchi K, Arthanari H, Imai M, Wagner G, Shimada I (2016) Nitrogen-detected TROSY yields comparable sensitivity to proton-detected TROSY for non-deuterated, large proteins under physiological salt conditions. J Biomol NMR 64(2):143–151. PubMedPubMedCentralCrossRefGoogle Scholar
  107. Tang Y, Huang YJ, Hopf TA, Sander C, Marks DS, Montelione GT (2015) Protein structure determination by combining sparse NMR data with evolutionary couplings. Nat Methods 12(8):751–754. PubMedPubMedCentralCrossRefGoogle Scholar
  108. Tjandra N, Bax A (1997a) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278(5340):1111–1114PubMedCrossRefGoogle Scholar
  109. Tjandra N, Bax A (1997b) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Errat Sci 278(5344):1697–1697PubMedCrossRefGoogle Scholar
  110. Tugarinov V, Kay LE (2005) Methyl groups as probes of structure and dynamics in NMR studies of high-molecular-weight proteins. Chembiochem 6(9):1567–1577PubMedPubMedCentralCrossRefGoogle Scholar
  111. Ulrich EL, Argentar D, Klimowicz A, Markley JL (1996) STAR/CIF macromolecular NMR data dictionaries and data file formats. Acta Crystallogr A52(a1):C577–C577CrossRefGoogle Scholar
  112. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Kent Wenger R, Yao H, Markley JL (2008) BioMagResBank. Nucleic Acids Res 36(Database issue):D402–D408PubMedPubMedCentralGoogle Scholar
  113. Valafar H, Prestegard JH (2004) REDCAT: a residual dipolar coupling analysis tool. J Magn Reson 167(2):228–241. PubMedCrossRefGoogle Scholar
  114. Vallurupalli P, Sekhar A, Yuwen T, Kay LE (2017) Probing conformational dynamics in biomolecules via chemical exchange saturation transfer: a primer. J Biomol NMR 67(4):243–271. PubMedCrossRefGoogle Scholar
  115. Venditti V, Egner TK, Clore GM (2016) Hybrid approaches to structural characterization of conformational ensembles of complex macromolecular systems combining NMR residual dipolar couplings and solution X-ray scattering. Chem Rev 116:6305–6322. PubMedPubMedCentralCrossRefGoogle Scholar
  116. Wang L, Eghbalnia HR, Bahrami A, Markley JL (2005) Linear analysis of carbon-13 chemical shift differences and its application to the detection and correction of errors in referencing and spin system identifications. J Biomol NMR 32(1):13–22PubMedCrossRefGoogle Scholar
  117. Whitley MJ, Xi Z, Bartko JC, Jensen MR, Blackledge M, Gronenborn AM (2017) A combined NMR and SAXS analysis of the partially folded cataract-associated V75D gammaD-Crystallin. Biophys J 112(6):1135–1146. PubMedPubMedCentralCrossRefGoogle Scholar
  118. Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley Interscience, New YorkCrossRefGoogle Scholar
  119. Young JY, Westbrook JD, Feng Z, Sala R, Peisach E, Oldfield TJ, Sen S, Gutmanas A, Armstrong DR, Berrisford JM, Chen L, Chen M, Di Costanzo L, Dimitropoulos D, Gao G, Ghosh S, Gore S, Guranovic V, Hendrickx PM, Hudson BP, Igarashi R, Ikegawa Y, Kobayashi N, Lawson CL, Liang Y, Mading S, Mak L, Mir MS, Mukhopadhyay A, Patwardhan A, Persikova I, Rinaldi L, Sanz-Garcia E, Sekharan MR, Shao C, Swaminathan GJ, Tan L, Ulrich EL, van Ginkel G, Yamashita R, Yang H, Zhuravleva MA, Quesada M, Kleywegt GJ, Berman HM, Markley JL, Nakamura H, Velankar S, Burley SK (2017) OneDep: unified wwPDB system for deposition, biocuration, and validation of macromolecular structures in the PDB archive. Structure 25(3):536–545. PubMedPubMedCentralCrossRefGoogle Scholar
  120. Zhao L, Pinon AC, Emsley L, Rossini AJ (2017) DNP-enhanced solid-state NMR spectroscopy of active pharmaceutical ingredients. Magn Reson Chem 56:583–609. CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Biochemistry DepartmentUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations