Complementary Use of Electron Cryomicroscopy and X-Ray Crystallography: Structural Studies of Actin and Actomyosin Filaments

  • Takashi Fujii
  • Keiichi NambaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1105)


Visualization of macromolecular structures is essential for understanding the mechanisms of biological functions because they are all determined by the structure and dynamics of macromolecular complexes. Electron cryomicroscopy (cryoEM) and image analysis has become a powerful tool for structural studies because of recent technical developments in microscope optics, cryostage control, image detection and the methods of sample preparation. In particular, the recent development of CMOS-based direct electron detectors with high sensitivity, high resolution and high frame rate has revolutionized the field of structural biology by making near-atomic resolution structural analysis possible from small amounts of solution samples. However, for some biological systems, it is still difficult to reach high resolution due to somewhat flexible nature of the structure, and a complementary use of cryoEM with X-ray crystallography is essential and useful to gain mechanistic understanding of the biological functions and mechanisms. We will describe our strategy for the structural analyses of actin filament and actomyosin rigor complex and the biological insights we gained from these structures.


Hybrid method for structural analysis Electron cryomicroscopy Image analysis 3D reconstruction X-ray crystallography F-actin assembly Treadmill Actomyosin motor Skeletal muscle contraction Biased Brownian motion 



This work was supported by JSPS KAKENHI Grant number 25711010 to T.F and 25000013 to K.N.


  1. Banerjee C, Hu Z, Huang Z, Warrington JA, Taylor DW, Trybus KM, Lowey S, Taylor KA (2017) The structure of the actin-smooth muscle myosin motor domain complex in the rigor state. J Struct Biol 200:325–333CrossRefGoogle Scholar
  2. Bauer CB, Holden HM, Thoden JB, Smith R, Rayment I (2000) X-ray Structures of the Apo and MgATP-bound States of Dictyostelium discoideum Myosin Motor Domain. J Biol Chem 275:38494–38499CrossRefGoogle Scholar
  3. Behrmann E, Müller M, Penczek PA, Manherz HG, Manstein D, Raunser S (2012) Structure of the rigor actin-tropomyosin-myosin complex. Cell 150:327–338CrossRefGoogle Scholar
  4. Cao E, Liao M, Cheng Y, Julius D (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504:113–118CrossRefGoogle Scholar
  5. Carlier MF, Pantaloni D (2007) Control of actin assembly dynamics in cell motility. J Biol Chem 282:23005–23009CrossRefGoogle Scholar
  6. Coureux PD, Wells AL, Ménétry J, Yengo CM, Morris CA, Sweeney HL, Houdusse A (2003) A structural state of the myosin V motor without bound nucleotide. Nature 425:419–423CrossRefGoogle Scholar
  7. Dominguez R, Freyzon Y, Trybus KM, Cohen C (1998) Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94:559–571CrossRefGoogle Scholar
  8. Egelman EH (2000) A robust algorithm for the reconstruction of helical filaments using single-particle methods. Ultramicroscopy 85:453–463CrossRefGoogle Scholar
  9. Fujii T, Namba K (2017) Structure of actomyosin rigour complex at 5.2 Å resolution and insights into the ATPase cycle mechanism. Nature Commun 8:13969 (11pp)CrossRefGoogle Scholar
  10. Fujii T, Kato T, Namba K (2009) Specific arrangement of α-helical coiled coils in the core domain of the bacterial flagellar hook for the universal joint function. Structure 17:1485–1493CrossRefGoogle Scholar
  11. Fujii T, Iwane AH, Yanagida T, Namba K (2010) Direct visualization of secondary structures of F-actin by electron cryomicroscopy. Nature 467:724–728CrossRefGoogle Scholar
  12. Fujiwara I, Vavylonis D, Pollard TD (2007) Polymerization kinetics of ADP- and ADP-Pi-actin determined by fluorescence microscopy. Proc Natl Acad Sci U S A 104:8827–8832CrossRefGoogle Scholar
  13. Fujiyoshi Y, Mizusaki T, Morikawa K, Yamagishi H, Aoki Y, Kihara H, Harada Y (1991) Development of a superfluid helium stage for high-resolution electron microscopy. Ultramicroscopy 38:241–251CrossRefGoogle Scholar
  14. Galkin VE, Orlova A, Cherepanova O, Lebart MC, Egelman EH (2008) High-resolution cryo-EM structure of the F-actin-fimbrin/plastin ABD2 complex. Proc Natl Acad Sci U S A 105:1494–1498CrossRefGoogle Scholar
  15. Gayathri P, Fujii T, Møller-Jensen J, van den Ent F, Namba K, Löwe J (2012) A bipolar spindle of antiparallel ParM filaments drives bacterial plasmid segregation. Science 338:1334–1337CrossRefGoogle Scholar
  16. Geeves MA, Goody RS, Gutfround H (1984) Kinetics of acto-S1 interaction as a guide to a model of the crossbridge cycle. J Muscle Res Cell Motil 5:351–356CrossRefGoogle Scholar
  17. Holmes KC, Angert I, Kull FJ, Jahn W, Schröder RR (2003) Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide. Nature 425:423–427CrossRefGoogle Scholar
  18. Holmes KC, Schroder RR, Sweeney HL, Houdusse A (2004) The structure of the rigor complex and its implications for the power stroke. Philos Trans R Soc B 359:1819–1828CrossRefGoogle Scholar
  19. Houdusse A, Szent-Gyögyi AG, Cohen C (2000) Three conformatinoal states of scallop myosin S1. Proc Natl Acad Sci U S A 97:11238–11243CrossRefGoogle Scholar
  20. Huxley HE (1969) The mechanism of muscular contraction. Science 164:1356–1365CrossRefGoogle Scholar
  21. Iwaki M, Iwane AH, Shimokawa T, Cooke R, Yanagida T (2009) Brownian search-and-catch mechanism for myosin-VI steps. Nature Chem Biol 5:403–405CrossRefGoogle Scholar
  22. Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic model of the actin:DNase I complex. Nature 347:37–44CrossRefGoogle Scholar
  23. Kimanius D, Forsberg BO, Scheres SH, Lindahl E (2016) Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. elife 15:e18722CrossRefGoogle Scholar
  24. Kimura Y, Vassylyev DG, Miyazawa A, Kidera A, Matsushima M, Mitsuoka K, Murata K, Hirai T, Fujiyoshi Y (1997) Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. Nature 389:206–211CrossRefGoogle Scholar
  25. Kitamura K, Tokunaga M, Iwane AH, Yanagida T (1999) A single myosin head moves along an actin filament with regular steps of 5.3 nanometres. Nature 397:129–134CrossRefGoogle Scholar
  26. Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB, Gubbens S, Agard DA, Cheng Y (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10:584–590CrossRefGoogle Scholar
  27. Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112CrossRefGoogle Scholar
  28. Llinas P, Isabet T, Song L, Ropars V, Zong B, Benisty H, Sirigu S, Morris C, Kikuti C, Safer D, Sweeney HL, Houdusse A (2015) How actin initiates the motor activity of myosin. Develop Cell 33:401–412CrossRefGoogle Scholar
  29. Lymn RW, Taylor EW (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemist 10:4617–4624CrossRefGoogle Scholar
  30. Ménétry J, Bahloul A, Wells AL, Yengo CM, Morris CA, Sweeney HL, Houdusse A (2005) The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature 435:779–785CrossRefGoogle Scholar
  31. Ménétry J, Llinas P, Cicolari J, Squires G, Liu X, Li A, Sweeney HL, Houdusse A (2008) The post-rigor structure of the myosin VI and implications for the recovery stroke. EMBO J 27:244–252CrossRefGoogle Scholar
  32. Mentes A, Huehn A, Liu X, Zwolak A, Dominguez R, Shuman H, Ostap EM, Sindelar CV (2018) High-resolution cryo-EM structures of actin-bound myosin states reveal the mechanism of myosin force sensing. Proc Natl Acad Sci U S A 115:1292–1297CrossRefGoogle Scholar
  33. Mimori Y, Yamashita I, Murata K, Fujiyoshi Y, Yonekura K, Toyoshima C, Namba K (1995) The structure of the R-type straight flagellar filament of Salmonella at 9 Å resolution by electron cryomicroscopy. J Mol Biol 249:69–87CrossRefGoogle Scholar
  34. Mitsuoka K, Hirai T, Murata K, Miyazawa A, Kidera A, Kimura Y, Fujiyoshi Y (1999) The structure of bacteriorhodopsin at 3.0 A resolution based on electron crystallography: implication of the charge distribution. J Mol Biol 286:861–882CrossRefGoogle Scholar
  35. Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423:949–955CrossRefGoogle Scholar
  36. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605CrossRefGoogle Scholar
  37. Nagy B, Jencks WP (1965) Depolymerization of F-actin by concentrated solutions of salts and denaturing agents. J Am Chem Soc 87:2480–2488CrossRefGoogle Scholar
  38. Namba K, Stubbs G (1985) Solving the phase problem in fiber diffraction. Application to tobacco mosaic virus at 3.6A resolution. Acta Crystallogr A41:252–262CrossRefGoogle Scholar
  39. Namba K, Stubbs G. (1986) Structure of tobacco mosaic virus at 3.6 Å resolution: implications for assembly. Science 231:1401–1406CrossRefGoogle Scholar
  40. Oda T, Iwasa M, Aihara T, Maeda Y, Narita A (2009) The nature of the globular- to fibrous-actin transition. Nature 457:441–445CrossRefGoogle Scholar
  41. Otterbein LR, Graceffa P, Dominguez R (2001) The crystal structure of uncomplexed actin in the ADP state. Science 293:708–711CrossRefGoogle Scholar
  42. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465CrossRefGoogle Scholar
  43. Rayment, I., Rypniewski,W. R., Schmidt-Bäse, K., Smith, R., Tomchick, D. R., Benning, M. M., Winkelmann D. A., Wesenberg, G. & Holden HM. (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50–58CrossRefGoogle Scholar
  44. Reubold TF, Eschenburg S, Becker A, Kull FJ, Manstein DJ (2003) A structural model for actin-induced nucleotide release in myosin. Nature Struct Biol 10:826–830CrossRefGoogle Scholar
  45. Reubold, T. F., Eschenburg, S., Becker, Loonard, M, Schmid, S. L., Vallee, R. B., Kull, F. J. & Manstein, D. J. (2005) Crystal structure of the GTPase domain of rat dynamin 1. Proc Natl Acad Sci U S A 102, 13093–13098CrossRefGoogle Scholar
  46. Sachse C, Chen JZ, Coureux P, Stroupe ME, Fandrich M, Grigorieff N (2007) High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus. J Mol Biol 371:812–835CrossRefGoogle Scholar
  47. Samatey FA, Imada K, Nagashima S, Kumasaka T, Yamamoto M, Vonderviszt F, Namba K (2001) Structure of the bacterial flagellar protofilament and implication for a switch for supercoiling. Nature 410:331–337CrossRefGoogle Scholar
  48. Samatey FA, Matsunami H, Imada K, Nagashima S, Shaikh TR, Thomas DR, Chen JZ, Derosier DJ, Namba K (2004) Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism. Nature 431:1062–1068CrossRefGoogle Scholar
  49. Scheres SH (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180:519–530CrossRefGoogle Scholar
  50. Schroder GF, Brunger AT, Levitt M (2007) Combining efficient conformational sampling with a deformable elastic network model facilitates structure refinement at low resolution. Struct 15:1630–1641CrossRefGoogle Scholar
  51. Sweeney HL, Houdusse A (2004) The motor mechanism of myosin V: insights for muscle contraction. Philos Trans R Soc B 359:1829–1841CrossRefGoogle Scholar
  52. Topf M, Lasker K, Webb B, Wolfson H, Chiu W, Sali A (2008) Protein structure fitting and refinement guided by cryo-EM density. Struct. 16:295–307CrossRefGoogle Scholar
  53. von der Ecken J, Heissler SM, Pathan-Chhatbar S, Manstein DJ, Raunser S (2016) Cryo-EM structure of a hyman cytoplasmic actomyosin complex at near-atomic resolution. Nature 354:724–728CrossRefGoogle Scholar
  54. Wulf SF, Roparsb V, Fujita-Beckera S, Ostera M, Hofhausa G, Trabucoc LG, Pylypenkob O, Sweeney HL, Houdusseb AM, Schröder R (2016) Force-producing ADP state of myosin bound to actin. Proc Natl Acad Sci U S A 113:E1844–E1852CrossRefGoogle Scholar
  55. Yanagida T, Arata T, Oosawa F (1985) Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle. Nature 316:366–369CrossRefGoogle Scholar
  56. Yang Y, Gourinath S, Kovács M, Mitray L, Reutzel R, Himmel DM, O'Neall-Hennessey E, Reshetnikova L, Szent-Györgyi AG, Brown JH, Cohen C (2007) Rigor-like structures from muscle myosins reveal key mechanical elements in the transduction pathways of this allosteric motor. Structure 15:553–564CrossRefGoogle Scholar
  57. Yonekura K, Maki-Yonekura S, Namba K (2003) Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424:643–650CrossRefGoogle Scholar
  58. Yount RG, Lawson D, Rayment I (1995) Is myosin a “Back Door” Enzyme? Biophys J 68:44s–49sGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
  2. 2.Quantitative Biology Center, RikenOsakaJapan

Personalised recommendations