Unraveling of Lipid Raft Organization in Cell Plasma Membranes by Single-Molecule Imaging of Ganglioside Probes

  • Kenichi G. N. SuzukiEmail author
  • Hiromune Ando
  • Naoko Komura
  • Takahiro Fujiwara
  • Makoto Kiso
  • Akihiro Kusumi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1104)


Gangliosides are involved in a variety of physiological roles and particularly in the formation and function of lipid rafts in cell membranes. However, the dynamic behaviors of gangliosides have not been investigated in living cells owing to the lack of fluorescent probes that behave like their parental molecules. This has recently been resolved by developing new fluorescent ganglioside analogues that act similarly to their parental molecules, synthesized by only chemical methods. We performed single fluorescent-molecule imaging and revealed that ganglioside probes dynamically enter and exit rafts containing CD59, a glycosylphosphatidylinositol (GPI)-anchored protein, both before and after stimulation. The residency time of our ganglioside probes in CD59 oligomers was 48 ms after stimulation. The residency times in CD59 homodimer and monomer rafts were 40 and 12 ms, respectively. These results reveal the first direct evidence that GPI-anchored receptors and gangliosides interact in a cholesterol-dependent manner. Furthermore, they demonstrate that gangliosides continually move in and out of rafts that contain CD59 in an extremely dynamic manner and at a much higher frequency than expected. In this chapter, we review methods for the development and single-molecule imaging of new fluorescent ganglioside analogues and discuss how raft domains are formed, both before and after receptor engagement.


Fluorescent ganglioside probes Raft domains Single-molecule fluorescence tracking GPI-anchored protein Cell plasma membrane 



This work was supported in part by Grants-in-Aids for Innovative Areas grants to K.G.M.S. [2311001 and 16H01358] and H.A. [24110505 and 26110704], various scientific research grants from the Japan Society for the Promotion of Science (Kiban B awarded to K.G.N.S. [24370055 and 15H04351], H.A. [15H04495], and M.K. [22380067]; Wakate A awarded to H.A. [23688014]; and Kiban S awarded to A.K. [16H06386]), a grant from the Core Research for Evolutional Science and Technology (CREST) project “Creation of Fundamental Technologies for Understanding and Control of Biosystem Dynamics” funded by the Japan Science and Technology Agency (JST) awarded to A.K., a grant from the Naito Foundation and Daiichi-Sankyo Foundation awarded to K.G.N.S., and a grant from the Mizutani Foundation awarded to K.G.N.S. and H.A. The WPI-iCeMS of Kyoto University is supported by the World Premier International Research Center Initiative (WPI) of MEXT.


  1. Ando H, Koike Y, Ishida H et al (2003) Extending the possibility of an N-Troc-protected sialic acid donor toward variant sialo-glycoside synthesis. Tetrahedron Lett 44(36):6883–6886CrossRefGoogle Scholar
  2. Ando H, Koike Y, Koizumi S et al (2005) 1,5-Lactamized sialyl acceptors for various disialoside syntheses: novel method for the synthesis of glycan portions of Hp-s6 and HLG-2 gangliosides. Angew Chem Int Ed 44(41):6759–6763CrossRefGoogle Scholar
  3. Ando-Akatsuka Y, Saitou M, Hirase T et al (1996) Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues. J Cell Biol 133(1):43–47CrossRefGoogle Scholar
  4. Aureli M, Mauri L, Ciampa MG et al (2016) GM1 ganglioside: past studies and future potential. Mol Neurobiol 53(3):1824–1842CrossRefGoogle Scholar
  5. Axelrod D, Burghardt TP, Thompson NL (1984) Total internal reflection fluorescence. Annu Rev Biophys Bioeng 13:247–268CrossRefGoogle Scholar
  6. Baumgart T, Hammond AT, Sengupta P et al (2007) Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc Natl Acad Sci U S A 104(9):3165–3170CrossRefGoogle Scholar
  7. Berntsson RP, Peng L, Dong M et al (2013) Structure of dual receptor binding to botulinum neurotoxin B. Nat Commun 4:2058CrossRefGoogle Scholar
  8. Chinnapen DJ, Hsieh WT, te Welscher YM et al (2012) Lipid sorting by ceramide structure from plasma membrane to ER for the cholera toxin receptor ganglioside GM1. Dev Cell 23(3):573–586CrossRefGoogle Scholar
  9. Coskun U, Grzybek M, Drechsel D et al (2011) Regulation of human EGF receptor by lipids. Proc Natl Acad Sci U S A 108(22):9044–9048CrossRefGoogle Scholar
  10. Dalton G, An SW, Al-Juboori SI et al (2017) Soluble klotho binds monosialoganglioside to regulate membrane microdomains and growth factor signaling. Proc Natl Acad Sci U S A 114(4):752–757CrossRefGoogle Scholar
  11. Dam DH, Wang XQ, Sheu S et al (2017) Ganglioside GM3 mediates glucose-induced suppression of IGF-1 receptor-Rac1 activation to inhibit keratinocyte motility. J Invest Dermatol 137(2):440–448CrossRefGoogle Scholar
  12. Eggeling C, Ringemann C, Medda R et al (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457(7233):1159–1162CrossRefGoogle Scholar
  13. Fleming FE, Bohm R, Dang VT et al (2014) Relative roles of GM1 ganglioside, N-acetylneuraminic acids, and α2β1 integrin in mediating rotavirus infection. J Virol 88(8):4558–4571CrossRefGoogle Scholar
  14. Fujikawa K, Nakashima S, Konishi M et al (2011) The first total synthesis of ganglioside GalNAc-GD1a, a target molecule for autoantibodies in Guillain-Barre syndrome. Chemistry 17(20):5641–5651CrossRefGoogle Scholar
  15. Fujita A, Cheng J, Hirakawa M et al (2007) Gangliosides GM1 and GM3 in the living cell membrane form clusters susceptible to cholesterol depletion and chilling. Mol Biol Cell 18(6):2112–2122CrossRefGoogle Scholar
  16. Fukuda Y, Fukui T, Hikichi C et al (2015) Neurotropin promotes NGF signaling through interaction of GM1 ganglioside with Trk neurotrophin receptor in PC12 cells. Brain Res 1596:13–21CrossRefGoogle Scholar
  17. Galimzyanov TR, Lyushnyak AS, Aleksandrova VV et al (2017) Line activity of ganglioside GM1 regulates the raft size distribution in a cholesterol-dependent manner. Langmuir 33(14):3517–3524CrossRefGoogle Scholar
  18. Hammond AT, Heberle FA, Baumgart T et al (2005) Crosslinking a lipid raft component triggers liquid ordered-liquid disordered phase separation in model plasma membranes. Proc Natl Acad Sci U S A 102(18):6320–6325CrossRefGoogle Scholar
  19. Harder T, Scheiffele P, Verkade P et al (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane compartments. J Cell Biol 141(4):929–942CrossRefGoogle Scholar
  20. Heerklotz H (2002) Triton promotes domain formation in lipid raft mixtures. Biophys J 83(5):2693–2701CrossRefGoogle Scholar
  21. Hewat EA, Blaas D (1996) Structure of a neutralizing antibody bound bivalently to human rhinovirus 2. EMBO J 15(7):1515–1523CrossRefGoogle Scholar
  22. Honigmann A, Mueller V, Ta H et al (2014) Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells. Nat Commun 5:5412CrossRefGoogle Scholar
  23. Huang H, Simsek MF, Jin W et al (2015) Effect of receptor dimerization on membrane lipid raft structure continuously quantified on single cells by camera based fluorescence correlation spectroscopy. PLoS One 10:e0121777CrossRefGoogle Scholar
  24. Imamura A, Ando H, Ishida H et al (2009) Ganglioside GQ1b: efficient total synthesis and the expansion to synthetic derivatives to elucidate its biological roles. J Org Chem 74(8):3009–3023CrossRefGoogle Scholar
  25. Iwayama Y, Ando H, Ishida H et al (2009) A first total synthesis of ganglioside HLG-2. Chemistry 15(18):4637–4648CrossRefGoogle Scholar
  26. Jones R, Howes E, Dunne PD et al (2010) Tracking diffusion of GM1 gangliosides and zona pellucida binding molecules in sperm plasma membranes following cholesterol efflux. Dev Biol 339(2):398–406CrossRefGoogle Scholar
  27. Jung WR, Kim HG, Shin MK et al (2010) The effect of ganglioside GQ1b on the NMDA receptor signaling pathway in H19-7 cells and rat hippocampus. Neuroscience 165(1):159–167CrossRefGoogle Scholar
  28. Kaiser HJ, Lingwood D, Levental I et al (2009) Order of lipid phases in model and plasma membranes. Proc Natl Acad Sci U S A 106(39):16645–16650CrossRefGoogle Scholar
  29. Kenworthy AK, Nichols BJ, Remmert CL et al (2004) Dynamics of putative raft-associated proteins at the cell surface. J Cell Biol 165(5):735–746CrossRefGoogle Scholar
  30. Kinoshita M, Suzuki KGN, Matsumori N et al (2017) Raft-based sphingomyelin interactions revealed by new fluorescent sphingomyelin analogs. J Cell Biol 216(4):1183–1204CrossRefGoogle Scholar
  31. Komura N, Suzuki KGN, Ando H et al (2016) Raft-based interactions of gangliosides with a GPI-anchored receptor. Nat Chem Biol 12(6):402–410CrossRefGoogle Scholar
  32. Kusumi A, Suzuki K (2005) Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochim Biophys Acta 1746(3):234–251CrossRefGoogle Scholar
  33. Kusumi A, Nakada C, Ritchie K et al (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34:351–378CrossRefGoogle Scholar
  34. Lenne PF, Wawrezinieck L, Conchonaud F et al (2006) Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J 25(14):3245–3256CrossRefGoogle Scholar
  35. Levental I, Grzybek M, Simons K (2011) Raft domains of variable properties and compositions in plasma membrane vesicles. Proc Natl Acad Sci U S A 108(28):11411–11416CrossRefGoogle Scholar
  36. Lingwood D, Ries J, Schwille P et al (2008) Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc Natl Acad Sci U S A 105(29):10005–10010CrossRefGoogle Scholar
  37. Lingwood D, Binnington B, Rog T et al (2011) Cholesterol modulates glycolipid conformation and receptor activity. Nat Chem Biol 7(5):260–262CrossRefGoogle Scholar
  38. Marushchak D, Gretskaya N, Mikhalyov I et al (2007) Self-aggregation-an intrinsic property of G(M1) in lipid bilayers. Mol Membr Biol 24(2):102–112CrossRefGoogle Scholar
  39. Mayor S, Rothberg KG, Maxfield FR (1994) Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science 264(5167):1948–1951CrossRefGoogle Scholar
  40. Nakashima S, Ando H, Saito R et al (2012) Efficiently synthesizing lacto-ganglio-series gangliosides by using a glucosyl ceramide cassette approach: the total synthesis of ganglioside X2. Chem Asian J 7(5):1041–1051CrossRefGoogle Scholar
  41. Ohkawa Y, Miyazaki S, Hamamura K et al (2010) Ganglioside GD3 enhances adhesion signals and augments malignant properties of melanoma cells by recruiting integrins to glycolipid-enriched microdomains. J Biol Chem 285(35):27213–27223CrossRefGoogle Scholar
  42. Polyakova SM, Belov VN, Yan SF et al (2009) New GM1 ganglioside derivatives for selective single and double labelling of the natural glycosphingolipid skeleton. Eur J Org Chem 2009(30):5162–5177CrossRefGoogle Scholar
  43. Sahl SJ, Leutenegger M, Hilbert M et al (2010) Fast molecular tracking maps nanoscale dynamics of plasma membrane lipids. Proc Natl Acad Sci U S A 107(15):6829–6834CrossRefGoogle Scholar
  44. Schwarzmann G, Wendeler M, Sandhoff K (2005) Synthesis of novel NBD-GM1 and NBD-GM2 for the transfer activity of GM2-activator protein by a FRET-based assay system. Glycobiology 15(12):1302–1311CrossRefGoogle Scholar
  45. Sevcsik E, Brameshuber M, Folser M et al (2015) GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane. Nat Commun 6:6969CrossRefGoogle Scholar
  46. Sezgin E, Levental I, Grzybek M et al (2012) Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim Biophys Acta 1818(7):1777–1783CrossRefGoogle Scholar
  47. Smith DC, Lord JM, Roberts LM et al (2004) Glycosphingolipids as toxin receptors. Semin Cell Dev Biol 15(4):397–408CrossRefGoogle Scholar
  48. Stefl M, Sachl R, Humpolickova J et al (2012) Dynamics and size of cross-linking-induced lipid nanodomains in model membranes. Biophys J 102(9):2104–2113CrossRefGoogle Scholar
  49. Suzuki KGN (2012) Lipid rafts generate digital-like signal transduction in cell plasma membranes. Biotechnol J 7(6):753–761CrossRefGoogle Scholar
  50. Suzuki K, Ritchie K, Kajikawa E et al (2005) Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques. Biophys J 88(5):3659–3680CrossRefGoogle Scholar
  51. Suzuki KGN, Fujiwara TK, Edidin M et al (2007a) Dynamic recruitment of phospholipase C gamma at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: single-molecule tracking study 2. J Cell Biol 177(4):731–742CrossRefGoogle Scholar
  52. Suzuki KGN, Fujiwara TK, Sanematsu F et al (2007b) GPI-anchored receptor clusters transiently recruit Lyn and G alpha for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J Cell Biol 177(4):717–730CrossRefGoogle Scholar
  53. Suzuki KGN, Kasai RS, Hirosawa KM et al (2012) Transient GPI-anchored protein homodimers are units for raft organization and function. Nat Chem Biol 8(9):774–783CrossRefGoogle Scholar
  54. Suzuki KGN, Kasai RS, Fujiwara TK et al (2013) Single-molecule imaging of receptor-receptor interactions. Methods Cell Biol 117:373–390CrossRefGoogle Scholar
  55. Svistounov D, Warren A, McNerney GP et al (2012) The relationship between fenestrations, sieve plates and rafts in liver sinusoidal endothelial cells. PLoS One 7:e46134CrossRefGoogle Scholar
  56. Tamai H, Ando H, Tanaka HN et al (2011) The total synthesis of the neurogenic ganglioside LLG-3 isolated from the starfish Linckia laevigata. Angew Chem Int Ed Engl 50(10):2330–2333CrossRefGoogle Scholar
  57. Tanaka KAK, Suzuki KGN, Shirai YM et al (2010) Membrane molecules mobile even after chemical fixation. Nat Methods 7(11):865–866CrossRefGoogle Scholar
  58. Taylor DR, Watt NT, Perera WS et al (2005) Assigning functions to distinct regions of the N-terminus of the prion protein that are involved in its copper-stimulated, clathrin-dependent endocytosis. J Cell Sci 118(21):5141–5153CrossRefGoogle Scholar
  59. Tokunaga M, Kitamura K, Saito K et al (1997) Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochim Biophys Res Commun 235:47–53CrossRefGoogle Scholar
  60. Wenger J, Conchonaud F, Dintinger J et al (2007) Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization. Biophys J 92(3):913–919CrossRefGoogle Scholar
  61. Werner TC, Bunting JR, Cathou RE et al (1972) The shape of immunoglobulin G molecules in solution. Proc Natl Acad Sci U S A 69(4):795–799CrossRefGoogle Scholar
  62. Yoon SJ, Nakayama K, Hikita T et al (2006) Epidermal growth factor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc Natl Acad Sci U S A 103(50):18987–18991CrossRefGoogle Scholar
  63. Zanetti-Domingues LC, Tynan CJ, Rolfe DJ et al (2013) Hydrophobic fluorescent probes introduce artifacts into single molecule tracking experiments due to non-specific binding. PLoS One 8:e74200CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Kenichi G. N. Suzuki
    • 1
    • 2
    Email author
  • Hiromune Ando
    • 1
    • 2
  • Naoko Komura
    • 1
    • 2
  • Takahiro Fujiwara
    • 2
  • Makoto Kiso
    • 2
  • Akihiro Kusumi
    • 2
    • 3
  1. 1.Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN)Gifu UniversityGifuJapan
  2. 2.Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto UniversityKyotoJapan
  3. 3.Membrane Cooperativity UnitOkinawa Institute of Science and Technology (OIST)Onna-sonJapan

Personalised recommendations