Advertisement

Intracranial and Intraocular Pressure Gradient and Glaucoma: A Retrospective Point of View

  • Xiangxiang Liu
  • Diya Yang
  • Ningli WangEmail author
Chapter
Part of the Advances in Visual Science and Eye Diseases book series (AVSED, volume 1)

Abstract

Glaucoma is one of the most ancient diseases. It was first described as “glaykoseis” in the era of Hippocrates in the fourth century B. C. with the symptoms of the seawater-like “greenish gray” appearing in the eyes and no vision [1]. In China, the Sheng Nong’s Herbal Classic recorded “green vision disorder” and “green vision impairment” back to Qin and Han dynasty [2]. However, doctors back then gave the diagnosis merely by judging the vision loss and change of the color of the eye; thus, other diseases, such as cataract, were also included, and the doctors could not distinguish them from glaucoma. In 1622, a British physician, Banister, recorded a patient whose vision wasn’t improved after cataract removal and the eyeball showed a hard state.l, which was the first document to relate intraocular pressure (IOP) to glaucoma [3].

References

  1. 1.
    Mark HH. Aqueous humor dynamics in historical perspective. Surv Ophthalmol. 2010;55(1):89–100.CrossRefGoogle Scholar
  2. 2.
    Pi HT. History of glaucoma in traditional Chinese medicine. Chin Med J. 1962;81:403–16.PubMedGoogle Scholar
  3. 3.
    Wales H. A history of glaucoma. Trans Ophthalmol Soc N Z. 1978;30:71–2.PubMedGoogle Scholar
  4. 4.
    Yang Y, Yu M, Zhu J, Chen X, Liu X. Role of cerebrospinal fluid in glaucoma: pressure and beyond. Med Hypotheses. 2010;74(1):31–4.CrossRefGoogle Scholar
  5. 5.
    Torack RM. Historical aspects of normal and abnormal brain fluids. I. Cerebrospinal fluid. Arch Neurol. 1982;39(4):197–201.CrossRefGoogle Scholar
  6. 6.
    Gjerris F, Snorrason E. The history of hydrocephalus. J Hist Neurosci. 1992;1:285–312.CrossRefGoogle Scholar
  7. 7.
    Aschoff A, Kremer P, Hashemi B, Kunze S. The scientific history of hydrocephalus and its treatment. Neurosurg Rev. 1999;22(2–3):67–93. discussion 4-5CrossRefGoogle Scholar
  8. 8.
    Hirsch N. Cerebrospinal fluid and its physiology. Anaesth Intensive Care Med. 2013;14(9):379–80.CrossRefGoogle Scholar
  9. 9.
    Puntis M, Reddy U, Hirsch N. Cerebrospinal fluid and its physiology. Anaesth Inten Care Med. 2016;17(12):611–2.CrossRefGoogle Scholar
  10. 10.
    Jaeger W. The foundation of experimental ophthalmology by Theodor Leber. Doc Ophthalmol. 1988;68(1–2):71–7.PubMedGoogle Scholar
  11. 11.
    Grant WM. A tonographic method of measuring the facility and rate of aqueous flow in human eyes. Arch Ophthalmol. 1950;44:204–14.CrossRefGoogle Scholar
  12. 12.
    Tamm ER. The role of the ciliary body in aqueous humor dynamics: structural aspects. Encyclop Eye. 2009:179–86.Google Scholar
  13. 13.
    Tamm ER. The trabecular meshwork outflow pathways: structural and functional aspects. Exp Eye Res. 2009;88(4):648–55.CrossRefGoogle Scholar
  14. 14.
    Alm A, Nilsson SF. Uveoscleral outflow--a review. Exp Eye Res. 2009;88(4):760–8.CrossRefGoogle Scholar
  15. 15.
    Leske MC, Heijl A, Hussein M, Bengtsson B, Hyman L, Komaroff E, et al. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol. 2003;121(1):48–56.CrossRefGoogle Scholar
  16. 16.
    Wang NL, Friedman DS, Zhou Q, Guo L, Zhu D, Peng Y, et al. A population-based assessment of 24-hour intraocular pressure among subjects with primary open-angle glaucoma: the handan eye study. Invest Ophthalmol Vis Sci. 2011;52(11):7817–21.CrossRefGoogle Scholar
  17. 17.
    Kass MAHD, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK, Wilson MR, Gordon MO. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):701–13.CrossRefGoogle Scholar
  18. 18.
    Marek B, Harris A, Kanakamedala P, Lee E, Amireskandari A, Carichino L, et al. Cerebrospinal fluid pressure and glaucoma: regulation of trans-lamina cribrosa pressure. Br J Ophthalmol. 2014;98(6):721–5.CrossRefGoogle Scholar
  19. 19.
    Volkov VV. Essential element of the glaucomatous process neglected in clinical practice. Oftalmol Zh. 1976;31:500–4.PubMedGoogle Scholar
  20. 20.
    Yablonski M, Ritch R, Pakorny K. Effect of decreased intracranial pressure on optic disc. Invest Ophthalmol Vis Sci. 1979;18(Suppl):165.Google Scholar
  21. 21.
    Morgan WH, Yu DY, Alder VA, Cringle SJ, Cooper RL, House PH, Constable IJ. The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure. Invest Opbthalmol Vis Set. 1998;39:l419–28.Google Scholar
  22. 22.
    Morgan WH, Yu DY, Balaratnasingam C. The role of cerebrospinal fluid pressure in glaucoma pathophysiology: the dark side of the optic disc. J Glaucoma. 2008;17:408–13.CrossRefGoogle Scholar
  23. 23.
    Berdahl JP, Allingham RR, Johnson DH. Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology. 2008;115(5):763–8.CrossRefGoogle Scholar
  24. 24.
    Berdahl JP, Fautsch MP, Stinnett SS, Allingham RR. Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. Invest Ophthalmol Vis Sci. 2008;49(12):5412–8.CrossRefGoogle Scholar
  25. 25.
    Ren R, Jonas JB, Tian G, Zhen Y, Ma K, Li S, et al. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology. 2010;117(2):259–66.CrossRefGoogle Scholar
  26. 26.
    Ren R, Wang N, Zhang X, Cui T, Jonas JB. Trans-lamina cribrosa pressure difference correlated with neuroretinal rim area in glaucoma. Graefes Arch Clin Exp Ophthalmol. 2011;249(7):1057–63.CrossRefGoogle Scholar
  27. 27.
    Wang N, Xie X, Yang D, Xian J, Li Y, Ren R, et al. Orbital cerebrospinal fluid space in glaucoma: the Beijing intracranial and intraocular pressure (iCOP) study. Ophthalmology. 2012;119(10):2065–73e1.CrossRefGoogle Scholar
  28. 28.
    Xie X, Zhang X, Fu J, Wang H, Jonas JB, Peng X, et al. Noninvasive intracranial pressure estimation by orbital subarachnoid space measurement: the Beijing Intracranial and Intraocular Pressure (iCOP) study. Crit Care. 2013;17(4):R162.CrossRefGoogle Scholar
  29. 29.
    Berdahl JP, Fleischman D, Zaydlarova J, Stinnett S, Allingham RR, Fautsch MP. Body mass index has a linear relationship with cerebrospinal fluid pressure. Investig Ophthalmol Vis Sci. 2012;53:1422e7.Google Scholar
  30. 30.
    Berdahl JP. Systemic parameters associated with cerebrospinal fluid pressure. J Glaucoma. 2013;22(Suppl 5):S17–8.  https://doi.org/10.1097/IJG.0b013e31829349fc.CrossRefPubMedGoogle Scholar
  31. 31.
    Ren R, Wang N, Zhang X, Tian G, Jonas JB. Cerebrospinal fluid pressure correlated with body mass index. Graefes Arch Clin Exp Ophthalmol. 2012;250(3):445–6.CrossRefGoogle Scholar
  32. 32.
    Liu H, Yang D, Ma T, Shi W, Zhu Q, Kang J, et al. Measurement and Associations of the Optic Nerve Subarachnoid Space in Normal Tension and Primary Open-Angle Glaucoma. Am J Ophthalmol. 2018;186:128–37.CrossRefGoogle Scholar
  33. 33.
    Killer HE. Compartment syndromes of the optic nerve and open-angle glaucoma. J Glaucoma. 2013;22(Suppl 5):S19–20.CrossRefGoogle Scholar
  34. 34.
    Linden C, Qvarlander S, Johannesson G, Johansson E, Ostlund F, Malm J, et al. Normal-Tension Glaucoma Has Normal Intracranial Pressure: A Prospective Study of Intracranial Pressure and Intraocular Pressure in Different Body Positions. Ophthalmology. 2018;125(3):361–8.CrossRefGoogle Scholar
  35. 35.
    Yang D, Fu J, Hou R, Liu K, Jonas JB, Wang H, et al. Optic neuropathy induced by experimentally reduced cerebrospinal fluid pressure in monkeys. Invest Ophthalmol Vis Sci. 2014;55(5):3067–73.CrossRefGoogle Scholar
  36. 36.
    Jaggi GP, Harlev M, Ziegler U, Dotan S, Miller NR, Killer HE. Cerebrospinal fluid segregation optic neuropathy: an experimental model and a hypothesis. Br J Ophthalmol. 2010;94(8):1088–93.CrossRefGoogle Scholar
  37. 37.
    Zhang Z, Wu S, Jonas JB, Zhang J, Liu K, Lu Q, et al. Dynein, kinesin and morphological changes in optic nerve axons in a rat model with cerebrospinal fluid pressure reduction: the Beijing Intracranial and Intraocular Pressure (iCOP) study. Acta Ophthalmol. 2016;94(3):266–75.CrossRefGoogle Scholar
  38. 38.
    Hou R, Zhang Z, Yang D, Wang H, Chen W, Li Z, et al. Pressure balance and imbalance in the optic nerve chamber: The Beijing Intracranial and Intraocular Pressure (iCOP) Study. Sci China Life Sci. 2016;59(5):495–503.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren HospitalCapital Medical UniversityBeijingChina

Personalised recommendations