Advertisement

The Role of CSFP in Glaucoma: A View in Retrospect

  • David Fleischman
  • R. Rand Allingham
Chapter
Part of the Advances in Visual Science and Eye Diseases book series (AVSED, volume 1)

Abstract

Glaucoma is well-recognized as a pressure-related disease. Intraocular pressure has been known as a major contributor to glaucomatous pathogenesis for over a century. Blood pressure and glaucoma have been investigated closely over several decades. More recent studies have reignited an interest in cerebrospinal fluid pressure as an important contributor.

Notes

Acknowledgments

Much of the information, papers, and historical records pertaining to Professor Kasmir Noishevsky were provided by Vladimir Reituzuv, MD, of the Medical Military Institute in St. Petersburg, Russia. Edward Gamm, MD, from St. Petersburg, was instrumental in reintroducing the work of Professor Noishevsky.

References

  1. 1.
    Suzuki Y, Iwase A, Araie M, Yamamoto T, Abe H, Shirato S, et al. Risk factors for open-angle glaucoma in a Japanese population: the Tajimi study. Ophthalmology. 2006;113(9):1613–7.CrossRefGoogle Scholar
  2. 2.
    Bonomi L, Marchini G, Marraffa M, Bernardi P, Morbio R, Varotto A. Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt study. Ophthalmology. 2000;107(7):1287–93.CrossRefGoogle Scholar
  3. 3.
    Dielemans I, Vingerling JR, Algra D, Hofman A, Grobbee DE, de Jong PT. Primary open-angle glaucoma, intraocular pressure, and systemic blood pressure in the general elderly population. The Rotterdam Study. Ophthalmology. 1995;102(1):54–60.CrossRefGoogle Scholar
  4. 4.
    Leske MC, Wu SY, Hennis A, Honkanen R, Nemesure B. Risk factors for incident open-angle glaucoma: the Barbados eye studies. Ophthalmology. 2008;115(1):85–93.CrossRefGoogle Scholar
  5. 5.
    Leske MC, Wu SY, Nemesure B, Hennis A. Incident open-angle glaucoma and blood pressure. Archiv Ophthalmol (Chicago, Ill: 1960). 2002;120(7):954–9.Google Scholar
  6. 6.
    Leske MC, Wu SY, Nemesure B, Hennis A. Incident open-angle glaucoma and ocular perfusion pressure. Invest Ophthalmol Vis Sci. 2011;52(11):7943.CrossRefGoogle Scholar
  7. 7.
    Noishevsky K. Glaucoma, its etiology and treatment. 1915.Google Scholar
  8. 8.
    Szymanski JW, S. Jaska prosta doswiadeczalna. Klin Ocz. 1925;3:145–50.Google Scholar
  9. 9.
    Kirschmann JS. Frage des aetiologie der glaukoms. Klin Monatshl Augenheilkd. 1926;77:256.Google Scholar
  10. 10.
    Klar J. Uber die entsehung des glaukom ohne hochdruck. Ber Dtsch Ophthalmol Gesell. 1940;52:162–5.Google Scholar
  11. 11.
    Miranda G. Glaucoma sin hipertension. Arch Soc Oftalmol Hisp-Am. 1945;5:579–99.Google Scholar
  12. 12.
    Matteuci P. Considerazioni sul glaucoma senza ipertensione. Atti 37 Con Soc Oftalmol Ital. 1948;10:168–9.Google Scholar
  13. 13.
    Matteuci PK, G. Dati clinicosperimentali sui rapporti tra escavazione glaucomatosa, ipertonia oculari e pressione liquorale. Atti 37 Con Soc Oftalmol Ital. 1948;10:559.Google Scholar
  14. 14.
    Stajduhar J. Contribution to the aetiology of pseudo-glaucoma; pseudoglaucoma and hypotension of the intra-cranial fluid. Ophthalmol J Int. 1951;122(3):129–42.Google Scholar
  15. 15.
    Primrose J. Mechanism of production of papilloedema. Br J Ophthalmol. 1964;48:19–29.CrossRefGoogle Scholar
  16. 16.
    Volkov V. Essential element of the glaucomatous process neglected in clinical practice. Oftalmol Zh. 1976;31:500–4.PubMedGoogle Scholar
  17. 17.
    Yablonsky MR, Pokorny KS. Effect of decreased intracranial pressure on optic disc. Invest Ophthalmol Vis Sci. 1979;18 [Suppl]:165.Google Scholar
  18. 18.
    Levene RZ. Low tension glaucoma: a critical review and new material. Surv Ophthalmol. 1980;24(6):621–64.CrossRefGoogle Scholar
  19. 19.
    Morgan WH, Yu DY, Cooper RL, Alder VA, Cringle SJ, Constable IJ. The influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient. Invest Ophthalmol Vis Sci. 1995;36(6):1163–72.PubMedGoogle Scholar
  20. 20.
    Morgan WH, Chauhan BC, Yu DY, Cringle SJ, Alder VA, House PH. Optic disc movement with variations in intraocular and cerebrospinal fluid pressure. Invest Ophthalmol Vis Sci. 2002;43(10):3236–42.PubMedGoogle Scholar
  21. 21.
    Morgan WH, Yu DY, Alder VA, Cringle SJ, Cooper RL, House PH, et al. The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure. Invest Ophthalmol Vis Sci. 1998;39(8):1419–28.PubMedGoogle Scholar
  22. 22.
    Jonas JB, Berenshtein E, Holbach L. Anatomic relationship between lamina cribrosa, intraocular space, and cerebrospinal fluid space. Invest Ophthalmol Vis Sci. 2003;44(12):5189–95.CrossRefGoogle Scholar
  23. 23.
    Jonas JB, Berenshtein E, Holbach L. Lamina cribrosa thickness and spatial relationships between intraocular space and cerebrospinal fluid space in highly myopic eyes. Invest Ophthalmol Vis Sci. 2004;45(8):2660–5.CrossRefGoogle Scholar
  24. 24.
    Berdahl JP, Allingham RR, Johnson DH. Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology. 2008;115(5):763–8.CrossRefGoogle Scholar
  25. 25.
    Berdahl JP, Fautsch MP, Stinnett SS, Allingham RR. Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. Invest Ophthalmol Vis Sci. 2008;49(12):5412–8.CrossRefGoogle Scholar
  26. 26.
    Ren R, Jonas JB, Tian G, Zhen Y, Ma K, Li S, et al. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology. 2010;117(2):259–66.CrossRefGoogle Scholar
  27. 27.
    Ren R, Zhang X, Wang N, Li B, Tian G, Jonas JB. Cerebrospinal fluid pressure in ocular hypertension. Acta Ophthalmol. 2011;89(2):e142–8.CrossRefGoogle Scholar
  28. 28.
    Pasquale LR, Willett WC, Rosner BA, Kang JH. Anthropometric measures and their relation to incident primary open-angle glaucoma. Ophthalmology. 2010;117(8):1521–9.CrossRefGoogle Scholar
  29. 29.
    Asrani S, Samuels B, Thakur M, Santiago C, Kuchibhatla M. Clinical profiles of primary open angle glaucoma versus normal tension glaucoma patients: a pilot study. Curr Eye Res. 2011;36(5):429–35.CrossRefGoogle Scholar
  30. 30.
    Berdahl JP, Fleischman D, Zaydlarova J, Stinnett S, Allingham RR, Fautsch MP. Body mass index has a linear relationship with cerebrospinal fluid pressure. Invest Ophthalmol Vis Sci. 2012;53(3):1422–7.CrossRefGoogle Scholar
  31. 31.
    Fleischman D, Allingham RR, Berdahl J, Fautsch M. Body mass, spinal fluid, and glaucoma. Ophthalmology. 2011;118(6):1225–6. author reply 6CrossRefGoogle Scholar
  32. 32.
    Fleischman D, Berdahl JP, Zaydlarova J, Stinnett S, Fautsch MP, Allingham RR. Cerebrospinal fluid pressure decreases with older age. PLoS One. 2012;7(12):e52664.CrossRefGoogle Scholar
  33. 33.
    Fleischman D, Berdahl J, Stinnett SS, Fautsch MP, Allingham RR. Cerebrospinal fluid pressure trends in diseases associated with primary open-angle glaucoma. Acta Ophthalmol. 2015;93(3):e234–6.CrossRefGoogle Scholar
  34. 34.
    Killer HE. Production and circulation of cerebrospinal fluid with respect to the subarachnoid space of the optic nerve. J Glaucoma. 2013;22(Suppl 5):S8–10.CrossRefGoogle Scholar
  35. 35.
    Killer HE. Compartment syndromes of the optic nerve and open-angle glaucoma. J Glaucoma. 2013;22(Suppl 5):S19–20.CrossRefGoogle Scholar
  36. 36.
    Killer HE, Jaggi GP, Miller NR. Optic nerve compartment syndrome. Acta ophthalmologica. 2011;89(5):e472; author reply e-3.Google Scholar
  37. 37.
    Killer HE, Jaggi GP, Miller NR, Huber AR, Landolt H, Mironov A, et al. Cerebrospinal fluid dynamics between the basal cisterns and the subarachnoid space of the optic nerve in patients with papilloedema. Br J Ophthalmol. 2011;95(6):822–7.CrossRefGoogle Scholar
  38. 38.
    Killer HE, Miller NR, Flammer J, Meyer P, Weinreb RN, Remonda L, et al. Cerebrospinal fluid exchange in the optic nerve in normal-tension glaucoma. Br J Ophthalmol. 2012;96(4):544–8.CrossRefGoogle Scholar
  39. 39.
    Killer HE, Subramanian PS. Compartmentalized cerebrospinal fluid. Int Ophthalmol Clin. 2014;54(1):95–102.CrossRefGoogle Scholar
  40. 40.
    Abegg M, Fleischhauer J, Landau K. Unilateral papilledema after trabeculectomy in a patient with intracranial hypertension. Klinische Monatsblatter fur Augenheilkunde. 2008;225(5):441–2.CrossRefGoogle Scholar
  41. 41.
    Greenfield DS, Wanichwecharungruang B, Liebmann JM, Ritch R. Pseudotumor cerebri appearing with unilateral papilledema after trabeculectomy. Archives of ophthalmology (Chicago, Ill : 1960). 1997;115(3):423–6.Google Scholar
  42. 42.
    Kawasaki A, Purvin V. Unilateral optic disc edema following trabeculectomy. J Neuro-ophthalmol. 1998;18(2):121–3.CrossRefGoogle Scholar
  43. 43.
    Fleischman D, Berdahl JP, Fautsch MP, Chesnutt DA, Allingham RR. Increasing intraocular pressure as treatment for papilledema. Exp Eye Res. 2013;115:278.CrossRefGoogle Scholar
  44. 44.
    Fleischman D, Perry JT, Rand Allingham R, Stinnett SS, Fleischman GM, Givre SJ, et al. Retrospective analysis of translaminar, demographic, and physiologic parameters in relation to papilledema severity. Canad J Ophthalmol. 2017;52(1):26–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • David Fleischman
    • 1
  • R. Rand Allingham
    • 2
  1. 1.Department of OphthalmologyUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Duke University Eye CenterDurhamUSA

Personalised recommendations