Primary Open-Angle Glaucoma, Trans-Lamina Cribrosa Pressure Difference, and Central Nerve System

  • Ning Fan
  • Guo Liu
  • Xiaoguang Zhang
  • Xuyang LiuEmail author
Part of the Advances in Visual Science and Eye Diseases book series (AVSED, volume 1)


Primary open-angle glaucoma (POAG) is an optic nerve disease with elevated IOP as the main risk factor. In recent years, with the development of interdisciplinary in the ophthalmology and neurology, new questions about the essence of POAG have been raised. Is POAG just an ocular disease? Is it a disease which involves the eye first and then the whole visual pathway? Or sometimes is it an ocular manifestation of a particular central nervous system (CNS) disease? Recent experimental and clinical studies have suggested that POAG patients may have an abnormally low cerebrospinal fluid pressure (CSFP). It was thought that trans-lamina cribrosa pressure difference (TLPD) may be associated with pathogenesis of POAG, instead of either IOP or CSFP alone. These questions have caused controversy in the field of ophthalmology. Previous studies showed that POAG does not only involve the optic nerve damage but also affects the lateral geniculate body, the optic radiation, and the visual cortex. It is a multilevel syndrome throughout the visual pathway. The mechanism of glaucomatous lesion is complex, which involves transsynaptic damage, blood supply disorder of the visual pathway, and blood-brain barrier abnormalities. It was hypothesized that glaucoma might be recognized as a CNS disease.


  1. 1.
    Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–7.CrossRefGoogle Scholar
  2. 2.
    Tamura H, Kawakami H, Kanamoto T, Kato T, Yokoyama T, Sasaki K, Izumi Y, Matsumoto M, Mishima HK. High frequency of open-angle glaucoma in Japanese patients with Alzheimer’s disease. J Neurol Sci. 2006;246(1–2):79–83.CrossRefGoogle Scholar
  3. 3.
    Bayer AU, Ferrari F, Erb C. High occurrence rate of glaucoma among patients with Alzheimer’s disease. Eur Neurol. 2002;47(3):165–8.CrossRefGoogle Scholar
  4. 4.
    Bayer AU, Keller ON, Ferrari F, Maag KP. Association of glaucoma with neurodegenerative diseases with apoptotic cell death: Alzheimer’s disease and Parkinson’s disease. Am J Ophthalmol. 2002;133(1):135–7.CrossRefGoogle Scholar
  5. 5.
    Mckinnon SJ. Glaucoma: ocular Alzheimer’s disease? Front Biosci. 2003;8(1–3):s1140–56.CrossRefGoogle Scholar
  6. 6.
    Criscuolo C, Fabiani C, Cerri E, Domenici L. Synaptic dysfunction in Alzheimer’s disease and glaucoma: from common degenerative mechanisms toward neuroprotection. Front Cell Neurosci. 2017;111(53):1–7.Google Scholar
  7. 7.
    Masuzzo A, Dinet V, Cavanagh C, Mascarelli F, Krantic S. Amyloidosis in retinal neurodegenerative diseases. Front Neurol. 2016;7(127):1–17.Google Scholar
  8. 8.
    Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S, Malinow R. APP processing and synaptic function. Neuron. 2003;37(6):925–37.CrossRefGoogle Scholar
  9. 9.
    Guo L, Salt TE, Luong V, Wood N, Cheung W, Maass A, Ferrari G, Russo-Marie F, Sillito AM, Cheetham ME, Moss SE, Fitzke FW, Cordeiro MF. Targeting amyloid-β in glaucoma treatment. PNAS. 2007;104(33):13444–9.CrossRefGoogle Scholar
  10. 10.
    Tsolaki F, Kountouras J, Topouzis F, Tsolaki M. Helicobacter pylori infection, dementia and primary open-angle glaucoma: are they connected? BMC Ophthalmol. 2015;15(1):24.CrossRefGoogle Scholar
  11. 11.
    Jankowska-Lech I, Terelak-Borys B, Grabska-Liberek I, Palasik W. Glaucoma neuropathy and neuropathy in multiple sclerosis- -common elements of pathogenesis? Klin Oczna. 2007;109(7–9):317–20.PubMedGoogle Scholar
  12. 12.
    Ren R, Jonas JB, Tian G, Zhen Y, Ma K, Li S, Wang H, Li B, Zhang X, Wang N. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology. 2010;117(2):259–66.CrossRefGoogle Scholar
  13. 13.
    Jonas JB, Wang N, Yang D, Ritch R, Panda-Jonas S. Facts and myths of cerebrospinal fluid pressure for the physiology of the eye. Prog Retin Eye Res. 2015;46(3):67–83.CrossRefGoogle Scholar
  14. 14.
    Gallina P, Savastano A, Becattini E, Orlandini S, Scollato A, Rizzo S, Carreras G, Di Lorenzo N, Porfirio B. Glaucoma in patients with shunt-treated normal pressure hydrocephalus. J Neurosurg. 2017;17:1–7.Google Scholar
  15. 15.
    Sawada Y, Araie M, Kasuga H, Ishikawa M, Iwata T, Murata K, Yoshitomi T. Focal lamina cribrosa defect in myopic eyes with nonprogressive glaucomatous visual field defect. Am J Ophthalmol. 2018;190:34–49.CrossRefGoogle Scholar
  16. 16.
    Crish SD, Sappington RM, Inman DM, Horner PJ, Calkins DJ. Distal axonopathy with structural persistence in glaucomatous neurodegeneration. Proc Natl Acad Sci U S A. 2010;107(11):5196–201.CrossRefGoogle Scholar
  17. 17.
    Fischer LR, Culver DG, Tennant P, Davis AA, Wang M, Castellanosanchez A, Khan J, Polak MA, Glass JD. Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol. 2004;185(2):232–40.CrossRefGoogle Scholar
  18. 18.
    Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P, Masliah E, Williams DS, Goldstein LS. Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science. 2005;307(5713):1282.CrossRefGoogle Scholar
  19. 19.
    Coleman M. Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci. 2005;6(11):889–98.CrossRefGoogle Scholar
  20. 20.
    Yücel YH, Gupta N, Zhang Q, Mizisin AP, Kalichman MW, Weinreb RN. Memantine protects neurons from shrinkage in the lateral geniculate nucleus in experimental glaucoma. Arch Ophthalmol. 2006;124(2):217–27.CrossRefGoogle Scholar
  21. 21.
    Sasaoka M, Nakamura K, Shimazawa M, Ito Y, Araie M, Hara H. Changes in visual fields and lateral geniculate nucleus in monkey laser-induced high intraocular pressure model. Exp Eye Res. 2008;86(5):770–82.CrossRefGoogle Scholar
  22. 22.
    Kashiwagi K, Okubo T, Tsukahara S. Association of magnetic resonance imaging of anterior optic pathway with glaucomatous visual field damage and optic disc cupping. J Glaucoma. 2004;13(3):189–95.CrossRefGoogle Scholar
  23. 23.
    Garaci FG, Bolacchi F, Cerulli A, Melis M, Spanò A, Cedrone C, Floris R, Simonetti G, Nucci C. Optic nerve and optic radiation neurodegeneration in patients with glaucoma: in vivo analysis with 3-T diffusion-tensor MR imaging. Radiology. 2009;252(2):496.CrossRefGoogle Scholar
  24. 24.
    Pache M, Meyer P. Morphological changes of the retrobulbar optic nerve and its meningeal sheaths in glaucoma. Ophthalmologica. 2006;220(6):393–6.CrossRefGoogle Scholar
  25. 25.
    Gupta N, Ang L, Tilly LND, Bidaisee L, Yücel YH. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol. 2006;90(6):674.CrossRefGoogle Scholar
  26. 26.
    Yücel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res. 2003;22(4):465–81.CrossRefGoogle Scholar
  27. 27.
    Zhang S, Wang H, Lu Q, Qing GP, Wang NL, Wang YD, Li SN, Yang DY, Yan FC. Detection of early neuron degeneration and accompanying glial responses in the visual pathway in a rat model of acute intraocular hypertension. Brain Res. 2009;1303:131–43.CrossRefGoogle Scholar
  28. 28.
    Gupta N, Greenberg G, Noël de Tilly L, Gray B, Polemidiotis M, Yücel YH. Atrophy of the lateral geniculate nucleus in human glaucoma detected by magnetic resonance imaging. Br J Ophthalmol. 2009;93(1):56–60.CrossRefGoogle Scholar
  29. 29.
    Chan KC, So KF, Wuabc EX. Proton magnetic resonance spectroscopy revealed choline reduction in the visual cortex in an experimental model of chronic glaucoma. Exp Eye Res. 2009;88(1):65–70.CrossRefGoogle Scholar
  30. 30.
    Kitsos G, Zikou AK, Bagli E, Kosta P, Argyropoulou MI. Conventional MRI and magnetisation transfer imaging of the brain and optic pathway in primary open-angle glaucoma. Br J Radiol. 2009;82(983):896.CrossRefGoogle Scholar
  31. 31.
    Chiquet C, Drouyer E, Woldemussie E, Ruiz G, Wheeler L, Denis P, Cooper H, Romanet JP. Consequences of glaucoma on circadian and central visual system. J Fr Ophtalmol. 2006;29(7):847–51.CrossRefGoogle Scholar
  32. 32.
    Wang H, Lu Q, Wang N, Liu H, Zhang L, Zhan GL. Loss of melanopsin-containing retinal ganglion cells in a rat glaucoma model. Chin Med J (Engl). 2008;121(11):1015–9.CrossRefGoogle Scholar
  33. 33.
    Downs JC, Yang H, Girkin C, Sakata L, Bellezza A, Thompson H, Burgoyne CF. Three-dimensional histomor-phometry of the normal and early glaucomatous monkey optic nerve head: neural canal and subarachnoid space architecture[J]. Invest Ophthalmol Vis Sci. 2007;48(7):3195–208.CrossRefGoogle Scholar
  34. 34.
    Harris A, Siesky BD, Haine C, Catoira Y, Sines D, Mccranor L, Garzozi H. Relationship of cerebral blood flow and central visual function in primary open-angle glaucoma. J Glaucoma. 2007;16(1):159–63.CrossRefGoogle Scholar
  35. 35.
    Sposato V, Parisi V, Manni L, et al. Glaucoma alters the expression of NGF and NGF receptors in visual cortex and geniculate nucleus of rats: effect of eye NGF application. Vision Res. 2009;49(1):54–63.CrossRefGoogle Scholar
  36. 36.
    Crawford ML, Harwerth RS, Smith EL, Mills S, Ewing B. Experimental glaucoma in primates: changes in cytochrome oxidase blobs in V1 cortex. Invest Ophthalmol Vis Sci. 2001;42(2):358–64.PubMedGoogle Scholar
  37. 37.
    Sacca SC, Vagge A, Pulliero A, Izzotti A. Helicobacter pylori infection and eye diseases: a systematic review. Medicine. 2014;93(28):1–13.CrossRefGoogle Scholar
  38. 38.
    Nesi G, Sestito S, Digiacomo M, Rapposelli S. Oxidative stress, mitochondrial abnormalities and proteins deposition: multitarget approaches in Alzheimer’s disease. Curr Top Med Chem. 2017;17(27):3062–79.PubMedGoogle Scholar
  39. 39.
    Ramirez AI, de Hoz R, Salobrar-Garcia E, Salazar JJ, Rojas B, Ajoy D, López-Cuenca I, Rojas P, Triviño A, Ramírez JM. The role of microglia in retinal neurodegeneration: Alzheimer’s disease, Parkinson, and glaucoma. Front Aging Neurosci. 2017;09(214):1–21.Google Scholar
  40. 40.
    Mead B, Logan A, Berry M, Leadbeater W, Scheven BA. Concise review: dental pulp stem cells: a novel cell therapy for retinal and central nervous system repair. Stem Cells. 2017;35(1):61–7.CrossRefGoogle Scholar
  41. 41.
    Killer HE, Jaggi GP, Flammer J, Miller NR, Huber AR, Mironov A. Cerebrospinal fluid dynamics between the intracranial and the subarachnoid space of the optic nerve. Is it always bidirectional? Brain. 2007;130(Pt 2):514–20.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ning Fan
    • 1
  • Guo Liu
    • 1
  • Xiaoguang Zhang
    • 1
  • Xuyang Liu
    • 1
    Email author
  1. 1.Shenzhen Eye HospitalJinan UniversityGuangdongChina

Personalised recommendations