Advertisement

Visual Impairment in Astronauts After Long-Duration Space Flight: A Backward of Glaucomatous Optic Neuropathy? Beijing Intracranial and Intraocular Pressure (iCOP) Study

  • Diya Yang
  • Ningli WangEmail author
Chapter
Part of the Advances in Visual Science and Eye Diseases book series (AVSED, volume 1)

Abstract

There have been extensive studies on physiologic changes of the astronauts in microgravity environment. However, the effect of this environment on eye remained greatly unknown until recently a report from the National Aeronautics and Space Administration (NASA) documented astronauts presenting visual impairment, anatomical changes in the eye, and elevated cerebrospinal fluid pressure (CSFP) during long-duration space flight [1]. Loss of visual acuity is a significant threat to astronauts’ performance, safety, and health. It is therefore important to understand the pathogenesis of this condition.

References

  1. 1.
    Mader TH, Gibson CR, et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology. 2011;118(10):2058–69.CrossRefGoogle Scholar
  2. 2.
    Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901–11.CrossRefGoogle Scholar
  3. 3.
    Hitchings RA, Spaeth GL. The optic disc in glaucoma I: classification. Br J Ophthalmol. 1976;60:778–85.CrossRefGoogle Scholar
  4. 4.
    Leske MC, Heijl A, Hussein M, et al. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol. 2003;121:48–56.CrossRefGoogle Scholar
  5. 5.
    Drance SM. Some factors in the production of low tension glaucoma. Br J Ophthalmol. 1972;56:229–42.CrossRefGoogle Scholar
  6. 6.
    Wang NL, Friedman DS, et al. A population-based assessment of 24-hour intraocular pressure among subjects with primary open-angle glaucoma: the Handan eye study. Invest Ophthalmol Vis Sci. 2011;52(11):7817–21.CrossRefGoogle Scholar
  7. 7.
    Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, Gordon MO. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):701–13. discussion 829-730CrossRefGoogle Scholar
  8. 8.
    Volkov VV. Essential element of the glaucomatous process neglected in clinical practice. Oftalmol Zh. 1976;31:500–4.PubMedGoogle Scholar
  9. 9.
    Berdahl JP, Allingham RR, Johnson DH. Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology. 2008;115:763–8.CrossRefGoogle Scholar
  10. 10.
    Berdahl JP, Fautsch MP, Stinnett SS, Allingham RR. Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. Invest Ophthalmol Vis Sci. 2008;49:5412–8.CrossRefGoogle Scholar
  11. 11.
    Ren R, Jonas JB, Tian G, et al. Cerebrospinal fluid pressure in glaucoma. A prospective study. Ophthalmology. 2010;117:259–66.CrossRefGoogle Scholar
  12. 12.
    Ren R, Zhang X, Wang N, Li B, Tian G, Jonas JB. Cerebrospinal fluid pressure in ocular hypertension. Acta Ophthalmol. 2011;89:E142–8.CrossRefGoogle Scholar
  13. 13.
    Yang D, Fu J, Hou R, Liu K, Jonas JB, Wang H, Chen W, Li Z, Sang J, Zhang Z, Liu S, Cao Y, Xie X, Ren R, Lu Q, Weinreb RN, Wang N. Optic neuropathy induced by experimentally reduced cerebrospinal fluid pressure in monkeys. Invest Ophthalmol Vis Sci. 2014;55(5):3067–73.CrossRefGoogle Scholar
  14. 14.
    Ren R, Wang N, et al. Trans-lamina cribrosa pressure difference correlated with neuroretinal rim area in glaucoma. Graefes Arch Clin Exp Ophthalmol. 2011;249(7):1057–63.CrossRefGoogle Scholar
  15. 15.
    Berdahl JP, Allingham RR. Intracranial pressure and glaucoma. Curr Opin Ophthalmol. 2010;21(2):106–11.CrossRefGoogle Scholar
  16. 16.
    Wang NL, Xie XB, Yang DY, et al. Orbital cerebrospinal fluid space in glaucoma: the Beijing iCOP Study. Ophthalmology. 2012;119(10):2065–73.CrossRefGoogle Scholar
  17. 17.
    Xie X, Zhang X, Fu J, et al. Noninvasive intracranial pressure estimation by orbital subarachnoid space measurement: the Beijing Intracranial and Intraocular Pressure (iCOP) study[J]. Crit Care. 2013;17(4):R162.CrossRefGoogle Scholar
  18. 18.
    Berdahl JP, Fleischman D, Zaydlarova J, Stinnett S, Allingham RR, et al. Body mass index has a linear relationship with cerebrospinal fluid pressure. Invest Ophthalmol Vis Sci. 2012;53:1422–7.CrossRefGoogle Scholar
  19. 19.
    Ren R, Wang N, Zhang X, Tian G, Jonas JB. Cerebrospinal fluid pressure correlated with body mass index. Graefes Arch Clin Exp Ophthalmol. 2012;250:445–6.CrossRefGoogle Scholar
  20. 20.
    Jonas JB, Wang N, Wang YX, You QS, Xie X, Yang D, Xu L. Body height, estimated cerebrospinal fluid pressure and open-angle glaucoma. The Beijing eye study 2011. PLoS One. 2014;9(1):e86678.CrossRefGoogle Scholar
  21. 21.
    Jonas JB, Nangia V, Wang N, Bhate K, Nangia P, Nangia P, Yang D, Xie X, Panda-Jonas S. Trans-lamina cribrosa pressure difference and open-angle glaucoma. The central India eye and medical study. PLoS One. 2013;8(12):e82284.CrossRefGoogle Scholar
  22. 22.
    Kramer LA, Sargsyan AE, et al. Orbital and intracranial effects of microgravity: findings at 3-T MR imaging. Radiology. 2012;263(3):819–27.CrossRefGoogle Scholar
  23. 23.
    Zhang LF, Hargens AR. Intraocular/intracranial pressure mismatch hypothesis for visual impairment syndrome in space. Aviat Space Environ Med. 2014;85(1):78–80.CrossRefGoogle Scholar
  24. 24.
    Draeger J, Wirt H, Schwartz R. Tonometry under microgravity conditions. In: Sahm PR, Jansen R, Keller MH, eds. Proceedings of the Norderney Symposium on Scientific Results of the German Spacelab Mission: D1, Nordenerney, Germany, August 27–29, 1986. Koln, Germany: Wissenschaftliche Projektfu˙hrung DI c/o DFVLR; 1987;503–9.Google Scholar
  25. 25.
    Mader TH, Taylor GR, Hunter N, et al. Intraocular pressure, retinal vascular, and visual acuity changes during 48 hours of 10 degrees head-down tilt. Aviat Space Environ Med. 1990;61:810–3.PubMedGoogle Scholar
  26. 26.
    Chiquet C, Custaud MA, Le Traon AP, et al. Changes in intraocular pressure during prolonged (7-day) head-down tilt bedrest. J Glaucoma. 2003;12:204–8.CrossRefGoogle Scholar
  27. 27.
    Drozdova NT, Grishin EP. State of the visual analyzer during hypokinesia [in Russian]. Kosm Biol Med. 1972;6:46–9.PubMedGoogle Scholar
  28. 28.
    Mader TH, Gibson CR, Caputo M, et al. Intraocular pressure and retinal vascular changes during transient exposure to microgravity. Am J Ophthalmol. 1993;115:347–50.CrossRefGoogle Scholar
  29. 29.
    Nicogossian AE, Parker JF Jr. Space physiology and medicine. Washington, DC: NASA, Technical Information Branch; 1982;158. NASA SP-447.Google Scholar
  30. 30.
    Costa VP, Arcieri ES. Hypotony maculopathy. Acta Ophthalmol Scand. 2007;85:586–97.CrossRefGoogle Scholar
  31. 31.
    Jacobson DM. Intracranial hypertension and the syndrome of acquired hyperopia with choroidal folds. J Neuroophthalmol. 1995;15(3):178–85.PubMedGoogle Scholar
  32. 32.
    Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, Di Polo A. The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res. 2012;31(2):152–81.CrossRefGoogle Scholar
  33. 33.
    Costa VP, Harris A, Anderson D, Stodtmeister R, Cremasco F, Kergoat H, Lovasik J, Stalmans I, Zeitz O, Lanzl I, Gugleta K, Schmetterer L. Ocular perfusion pressure in glaucoma. Acta Ophthalmol. 2014;92(4):e252–66.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren HospitalCapital Medical UniversityBeijingChina
  2. 2.Beijing Ophthalmology & Visual Sciences Key LaboratoryBeijingChina

Personalised recommendations