The Relationship Between Cerebrospinal Fluid Pressure and Blood Flow in the Retina and Optic Nerve

  • Alon HarrisEmail author
  • Josh Gross
  • Daniele Prada
  • Brent Siesky
  • Alice C. Verticchio Vercellin
  • Lauren Saint
  • Giovanna Guidoboni
Part of the Advances in Visual Science and Eye Diseases book series (AVSED, volume 1)


Advancements in imaging technologies over the past several decades have allowed for the identification of non-intraocular pressure (IOP) processes involved in glaucomatous optic neuropathy. Perhaps the most commonly cited non-IOP risk factors are impaired ocular circulation and/or faulty vascular regulation and vasospasm [1, 2]. Other important considerations include the possible synergistic interaction between IOP and intracranial pressure (ICP) and their effects on ocular structure and circulation [3]. The ability to assess ICP in glaucoma has been significantly limited by the highly invasive nature of ICP measurements. Recently, the ability to quantify ICP noninvasively has significantly improved, with pilot data suggesting a link between low ICP and glaucoma [4]. Even though the limited data on the topic prevents us from drawing definitive conclusions, the emergence of noninvasive assessment protocols holds great promise to define the pathway of ICP’s involvement in glaucoma. In this article, new data and analysis on cerebrospinal fluid pressure (CSFp) and its impact on optic nerve and retinal microcirculation will be explored alongside the broader implications of ICP in glaucoma. One difficulty in interpreting ICP as a risk factor for the onset and progression of glaucoma is the interplay and possible synergies among IOP, ICP, and the ocular circulation. Advances in physically based mathematical modeling have recently allowed for the exploration of glaucoma risk factor interconnectivity [5–9], providing further insight into glaucoma pathophysiology, and eventually may allow for individualized screening and improved patient-specific treatment options [10]. The concepts of ICP, pilot data, and future paradigms in glaucoma management are presented herein, with a focus on comprehensively understanding the role and impact that ICP may have on glaucomatous optic neuropathy.



Dr. Alon Harris would like to disclose that he receives remuneration from CIPLA, AdOM and Shire for serving as a consultant. Dr. Harris also holds an ownership interest in AdOM and Oxymap. All relationships listed above are pursuant to Indiana University’s policy on outside activities. None of the other authors listed have any financial disclosures.


This work has been partially supported by the NSF DMS-1224195, NIH 1R21EY022101-01A1, a grant from Research to Prevent Blindness (RPB, New York, NY, USA), an Indiana University Collaborative Research Grant of the Office of the Vice President for Research, the Chair Gutenberg funds of the Cercle Gutenberg (France), and the Labex IRMIA (University of Strasbourg, France). The funding parties did not have any role in the study design, collection of data, analysis of data, writing of the manuscript, or decision to submit the manuscript.


  1. 1.
    Moore D, Harris A, WuDunn D, Kheradiya N, Siesky B. Dysfunctional regulation of ocular blood flow: a risk factor for glaucoma? Clin Ophthalmol. 2008;2(4):849–61.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Moore NA, Harris A, Wentz S, Verticchio Vercellin AC, Parekh P, Gross J, Hussain RM, Thieme C, Siesky B. Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years. Br J Ophthalmology. 2016;
  3. 3.
    Siaudvytvte L, Janulevicience I, Daveckaite A, Ragauskas A, Bartusis L, Kucinoviene J, Siesky B, Harris A. Literateure review and meta-analysis of translaminar pressure difference in open-angle glaucoma. Eye (Lond). 2015a;29(10):1242–50.CrossRefGoogle Scholar
  4. 4.
    Siaudvytyte L, Januleviciene I, Ragauskas A, Bartusis L, Meiliuniene I, Siesky B, Harris A. The difference in translaminar pressure gradient and neuroretinal rim area in glaucoma and healthy subjects. J Ophthalmol. 2014;2014:937360.CrossRefGoogle Scholar
  5. 5.
    Arciero J, Harris A, Siesky B, Amireskandari A, Gershuny V, Pickrell A, Guidoboni G. Theoretical analysis of vascular regulatory mechanisms contributing to retinal blood flow autoregulation. Invest Ophthalmol Vis Sci. 2013;54(8):5584–93.CrossRefGoogle Scholar
  6. 6.
    Carichino L, Harris A, Guidoboni G, Siesky BA, Abegão Pinto L, Vandewalle E, Olafsdottir OB, Hardarson SH, van Keer K, Stalmans I, Stefánsson E, Arciero JC. A theoretical investigation of the increase in venous oxygen saturation levels in advanced glaucoma patients. J Model Ophthalmol. 2016;1(1):64–87.Google Scholar
  7. 7.
    Cassani S, Guidoboni G, Janulviciene I, Carichino L, Siesky BA, Tobe LA, Amireskandari A, Baikstiene DP, Harris A. Effect of trabeculectomy on retinal hemodynamics: mathematical modeling of clinical data. In: Causin P, Guidoboni G, Sacco R, Harris A, editors. Integrated Multidisciplinary Approaches in the Study and Care of the Human Eye. Amsterdam: Kugler Publications; 2014. p. 29–36.Google Scholar
  8. 8.
    Dziubek A, Guidoboni G, Harris A, Hirani AH, Rusjan E, Thistleton W. Effect of ocular shape and vascular geometry on retinal hemodynamics: a computational model. Biomech Model Mechanobiol. 2016;15(4):893–907. [Epub 2015 Oct 7]CrossRefGoogle Scholar
  9. 9.
    Guidoboni G, Harris A, Cassani S, Arciero J, Siesky B, Amireskandari A, Tobe L, Egan P, Januleviciene I, Park J. Intraocular pressure, blood pressure and retinal blood flow autoregulation: a mathematical model to clarify their relationship and clinical relevance. Invest Ophthalmol Vis Sci. 2014a;55(7):4105–18.CrossRefGoogle Scholar
  10. 10.
    Gross JC, Harris A, Siesky BA, Sacco R, Shah A, Guidoboni G. Mathematical modeling for novel treatment approaches to open-angle glaucoma. Expert Rev Ophthalmol. 2017;12:443–55.CrossRefGoogle Scholar
  11. 11.
    Sadler TW. Langman’s medical embryology. 12th ed: Lipincott Williams & Wilkins; 2012. p. 330–1.Google Scholar
  12. 12.
    Donnelly J, Budohoski KP, Smielewski P, Czosnyka M. Regulation of cerebral circulation: bedside assessment and clinical implications. Crit Care. 2016;20(1):129.CrossRefGoogle Scholar
  13. 13.
    Prada D, Harris A, Guidoboni G, Siesky B, Huang AM, Arciero JC. Autoregulation and neurovascular coupling in the optic nerve head. Surv Ophthalmol. 2016a;61(2):164–86.CrossRefGoogle Scholar
  14. 14.
    Harris A, Arend O, Wolf S, Cantor LB, Martin BJ. CO2 dependence of retinal arterial and capillary blood velocity. Acta Ophthalmol Scand. 1995;73(5):421–4.CrossRefGoogle Scholar
  15. 15.
    Harris A, Zarfati D, Zalish M, Biller J, Sheets CW, Rechtman E, Migliardi R, Garzoli HT. Reduced cerebrovascular blood flow velocities and vasoreactivity in open angle glaucoma. Am J Ophthalmol. 2003;135(2):144–7.CrossRefGoogle Scholar
  16. 16.
    Siesky B, Harris A, Brizendine E, Marques C, Loh J, Mackey J, Overton J, Netland P. Literature review and meta-analysis of topical carbonic anhydrase inhibitors and ocular blood flow. Surv Ophthalmol. 2009;54(1):33–46.CrossRefGoogle Scholar
  17. 17.
    Martinez A, Gonzalez F, Capeans C, Perez R, Sanchez-Salorio M. Dorzolamide effect on ocular blood flow. Invest Ophthalmol Vis Sci. 1999;40(6):1270–5.PubMedGoogle Scholar
  18. 18.
    Siesky B, Harris A, Kagemann L, Stefansson E, McCranon L, Miller B, Bwatwa J, Regen G, Ehrlich R. Ocular blood flow and oxygen delivery to the retina in primary open-angle glaucoma patients: the addition of dorzolamide to timolol monotherapy. Acta Ophthalmol. 2010;88(1):142–9.CrossRefGoogle Scholar
  19. 19.
    Hosking SL, Harris A, Chung HS, Jonescu-Cuypers CD, Kagemann L, Roff Hilton EJ, Garzozi H. Ocular haemodynamic responses to induced hypercapnia and hyperoxia in glaucoma. Br J Ophthalmol. 2004;88(3):406–11.CrossRefGoogle Scholar
  20. 20.
    Ho JD, Hu CC, Lin CC. Open angle glaucoma and the risk of stroke development: a 5-yr populaiton-based follow up study. Stroke. 2009;40(8):2685–90.CrossRefGoogle Scholar
  21. 21.
    Doucette LP, Rasnitsyn A, Seifi M, Walter MA. The interactions of genes, age, and environment in glaucoma pathogenesis. Surv Ophthalmol. 2015;60(4):310–26.CrossRefGoogle Scholar
  22. 22.
    Yang D, Cabral D, Gaspard EN, Lipton RB, Rundek T, Derby CA. Cerebral hemodynamics in the elderly: a transcranial doppler study in the Einstein aging study cohort. J Ultrasound Med. 2016;35(9):1907–14.CrossRefGoogle Scholar
  23. 23.
    Krejza J, Mariak Z, Walecki J, Szydlik P, Lewko J, Ustymowicz A. Transcranial color Doppler sonography of basal cerebral arteries in 182 healthy subjects: age and sex variability and normal reference values for blood flow parameters. Am J Roetgenol. 1999;172(1):213–8.CrossRefGoogle Scholar
  24. 24.
    Harris A, Harris M, Biller J, Garzozi H, Zarfty D, Ciulla TA, Martin B. Aging affects the retrobulbar circulation differently in women and men. Arch Ophthalmol. 2000;118(8):1076–80.CrossRefGoogle Scholar
  25. 25.
    Ehrlich R, Kheradiya NS, Winston DM, Moore DB, Wirostko B, Harris A. Age-related ocular vascular changes. Graefes Arch Clin Exp Ophthalmol. 2009;247(5):583–91.CrossRefGoogle Scholar
  26. 26.
    Fleischman D, Berdahl P, Zaydlarova J, Stinnett S, Fautsch MP, Allingham RR. Cerebrospinal fluid pressure decreases with older age. PLoS One. 2012;7(12):e52664. Epub 2012 Dec 26CrossRefGoogle Scholar
  27. 27.
    Harris et al. Association for Research in Vision and Ophthalmology (ARVO). Presentation entitled, ‘Fourier domain optical coherence tomography blood flow assessment in patients with glaucoma: A new blood flow method’. Fort Lauderdale, FL. May 2–6, 2010.Google Scholar
  28. 28.
    Tielsch JM, Katz J, Sommer A, Quigley HA, Javitt JC. Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch Ophthalmol. 1995 Feb;113(2):216–21.Google Scholar
  29. 29.
    Koustenis A, Harris A, Gross J, Januleviciene I, Shah A, Siesky B. Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research. Br J Ophthalmol. 2017;101(1):16–20. Epub ahead of printCrossRefGoogle Scholar
  30. 30.
    Bonomi L, Marchini G, Marraffa M, Morbio R. The relationship between intraocular pressure and glaucoma in a defined population. Data from the Egna-Neumarkt Glaucoma study. Ophthalmology. 2000;107(7):1287–93.CrossRefGoogle Scholar
  31. 31.
    Hulsman CA, Vingerling JR, Hofman A, Witteman JC, de Jong PT. Blood pressure, arterial stiffness, and open-angle glaucoma: the Rotterdam study. Arch Ophthalmol. 2007;125(6):805–12.CrossRefGoogle Scholar
  32. 32.
    Leske MC, Connell AM, Wu SY, Hyman LG, Schachat AP. Risk factors for open-angle glaucoma The Barbados Eye Study. Arch Ophthalmol. 1995;113(7):918–24.CrossRefGoogle Scholar
  33. 33.
    Quigley HA, West SK, Rodriquez J, Munoz B, Klein R, Snyder R. The prevalence of glaucoma in a population-based study of Hispanic subject: Proyecto VER. Arch Ophthalmol. 2001;119(12):1819–26.CrossRefGoogle Scholar
  34. 34.
    Memarzadeh F, Ying-Lai M, Chung J, Azen SP, Varma R, Los Angeles Latino Eye Study Group. Blood pressure, perfusion pressure, and open-angle glaucoma: the Los Angeles Latino Eye Study. Invest Ophthalmol Vis Sci. 2010;51(6):2872–7.CrossRefGoogle Scholar
  35. 35.
    Zheng Y, Wong TY, Mitchell P, Friedman DS, He M, Aung T. Distribution of ocular perfusion pressure and its relationships with open-angle glaucoma: the Singapore Malay Eye Study. Invest Ophthalmol Vis Sci. 2010;51(7):3399–404.CrossRefGoogle Scholar
  36. 36.
    Deb AK, Kaliaperumal S, Rao VA, Sengupta S. Relationship between systemic hypertension, perfusion pressure, and glaucoma: a comparative study in an adult Indian population. Indian J Ophthalmol. 2014;62(9):917–22.CrossRefGoogle Scholar
  37. 37.
    Tieisch JM, Katz J, Sommer A, Quigley HA, Javitt JC. Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch Ophthalmol. 1995;113(2):216–21.CrossRefGoogle Scholar
  38. 38.
    De Moraes CG, Liebman JM, Greenfield DS, Gardiner SK, Ritch R, Krupin J, Low-pressure Glaucoma Treatment Study Group. Risk factors for visual field progression in the low-pressure glaucoma treatment study. Am J Ophthalmol. 2012;154(4):702–11.CrossRefGoogle Scholar
  39. 39.
    Leske MC, Heijl A, Hyman L, Bengtsson B, Dong L, Yang Z, EMGT Group. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 2007;114(11):1965–72.CrossRefGoogle Scholar
  40. 40.
    Leske MC, Wu SY, Hennis A, Honkanen R, Nemesure B, BEBs Study Group. Risk factors for incident open-angle glaucoma: the Barbados eye studies. Ophthalmology. 2008;115(1):85–93.CrossRefGoogle Scholar
  41. 41.
    Ramdas WD, Wolfs RC, Hofman A, de Jong PT, Vingerling JR, Jansonius NM. Ocular perfusion pressure and the incidence of glaucoma: real effect or artifact? The Rotterdam study. Invest Ophthalmol Vis Sci. 2011;52(9):6875–81.CrossRefGoogle Scholar
  42. 42.
    Topouzis F, Coleman AL, Harris A, Jonescu-Cuypers C, Yu F, Marvoudis L, Anastasopoulos E, Pappas T, Koskosas A, Wilson MR. Association of blood pressure status with the optic disk structure in non-glaucoma subjects: the Thessaloniki Eye Study. Am J Ophthalmol. 2006;142(11):60–7.CrossRefGoogle Scholar
  43. 43.
    Topouzis F, Wilson MR, Harris A, Founti P, Yu F, Anastasopoulos E, Pappas T, Koskosas A, Salonikiou A, Coleman AL. Association of open-angle glaucoma with perfusion pressure status in the Thessaloniki Eye Study. Am J Ophthalmol. 2013;155(5):843–51.CrossRefGoogle Scholar
  44. 44.
    Ren R, Jonas JB, Tian G, Zhen Y, Ma K, Li S, Wang H, Li B, Zhang X, Wang N. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology. 2010;117(2):259–66.CrossRefGoogle Scholar
  45. 45.
    Harris A, Evans D, Martin B, Zalish M, Kagemann L, McCranor L, Garzozi H. Nocturnal blood pressure reduction: effect on retrobulbar hemodynamics in glaucoma. Graefes Arch Clin Exp Ophthalmol. 2002;240(5):372–8. Epub 2002 Apr 16CrossRefGoogle Scholar
  46. 46.
    Raboel PH, Bartek J, Andresen M, Bellander BM, Romner B. Intracranial pressure monitoring: invasive versus non-invasive methods—a review. Crit Care Res Pract. 2012;2012:950393.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Siaudvytvte L, Janulevicience I, Daveckaite A, Ragauskas A, Siesky B, Harris A. Neuroretinal rim area and ocular haemodynamic parameters in patients with normal-tension glaucoma with differing intracranial pressures. Br J Ophthalmol. 2015b;100(8):1134–8.CrossRefGoogle Scholar
  48. 48.
    Jóhannesson G, Eklund A, Lindén C. Intracranial and Intraocular Pressure at the Lamina Cribrosa: Gradient Effects Curr Neurol Neurosci Rep. 2018;18(5):25.Google Scholar
  49. 49.
    Boltz A, Schmidl D, Werkmeister RM, Lasta M, Kaya S, Palkovits S, Told R, Napora KJ, Popa-Cherecheanu A, Garhöfer G, Schmetterer L. Regulation of optic nerve head blood flow during combined changes in intraocular pressure and arterial blood pressure. J Cereb Blood Flow Metab. 2013;33(12):1850–6. Epub 2013 Aug 7CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Harris A, Guidoboni G, Arciero JC, Ameriskandari A, Tobe LA, Siesky BA. Ocular hemodynamics and glaucoma: the role of mathematical modeling. Eur J Ophthalmol. 2013;23(2):139–46.CrossRefGoogle Scholar
  51. 51.
    Guidoboni G, Harris A, Carichino L, Arieli Y, Siesky BA. Effect of intraocular pressure on the hemodynamics of the central retinal artery: a mathematical model. Math Biosci Eng. 2014b;11(3):523–46.CrossRefGoogle Scholar
  52. 52.
    Carichino L, Guidoboni G, Siesky BA, Amireskandari A, Januleviciene I, Harris A. Effect of intraocular pressure and cerebrospinal fluid pressure on the blood flow in the central retinal vessels. In: Causin P, Guidoboni G, Sacco R, Harris A, editors. Integrated multidisciplinary approaches in the study and care of the human eye. Amsterdam: Kugler Publications; 2014. p. 59–66.Google Scholar
  53. 53.
    Morgan WH, Yu DY, Alder VA, Cringle SJ, Cooper RL, House PH, Constable IJ. The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure. Invest Ophthalmol Vis Sci. 1998;39(8):1419–28.PubMedGoogle Scholar
  54. 54.
    Burgoyne CF. A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Exp Eye Res. 2011;93(2):120–32.CrossRefGoogle Scholar
  55. 55.
    D. Prada, R. Sacco, B. Cockburn, L. Bociu, J. Webster, B. A. Siesky, A. Harris. Influence of tissue viscoelasticity on the optic nerve head perfusion: a mathematical model. In: ARVO 2016 Annual Meeting, Program Number 3558, Poster Board Number A0256, 2016b.Google Scholar
  56. 56.
    Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR. Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol. 1983;95(5):673–91.CrossRefGoogle Scholar
  57. 57.
    Jonas JJ, Mardin CY, Schrehardt US, Naumann GOH. Morphometry of the human lamina cribrosa surface. Invest Ophthalmol Vis Sci. 1991;32(2):401–5.PubMedGoogle Scholar
  58. 58.
    Crawford Downs J, Roberts MD, Sigal IA. Glaucomatous cupping of the lamina cribrosa: a review of the evidence for active progressive remodeling as a mechanism. Exp Eye Res. 2011;93(2):133–40.CrossRefGoogle Scholar
  59. 59.
    Yong Woo Kim, Byeong Wook Yoo, Jin Wook Jeoung, Hee Chan Kim, Ki Ho Park. Lamina cribrosa pore characteristics in eyes with primary open-angle glaucoma: A swept-source optical coherence tomography study. In ARVO Annual Meeting Abstract, June 2015.Google Scholar
  60. 60.
    M. J. Girard, E. Birgersson, H. L. Leo, A. Thiery, T. Chuangsuwanich. Factors Influencing Lamina Cribrosa Microcapillary Hemodynamics and Oxygen Concentrations. ARVO 2016 Annual Meeting, Program Number: 4711.Google Scholar
  61. 61.
    Bociu L, Guidoboni G, Sacco R, Webster JT. Analysis of nonlinear poro-elastic and poro-visco-elastic models. Arch Ration Mech Anal. 2016;222(3):1445–519. [Epub 2016 Jul 14]CrossRefGoogle Scholar
  62. 62.
    Causin P, Guidoboni G, Harris A, Prada D, Sacco R, Terragni S. A poroelastic model for the perfusion of the lamina cribrosa in the optic nerve head. Math Biosci. 2014;257:33–41.CrossRefGoogle Scholar
  63. 63.
    Downs JC, Suh JK, Thomas KA, Bellezza AJ, Hart RT, Burgoyne CF. Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes. Invest Ophthalmol Vis Sci. 2005;46(2):540–6.CrossRefGoogle Scholar
  64. 64.
    Palko JR, Iwabe S, Pan X, Agarwal G, Komáromy AM, Liu J. Biomechanical properties and correlation with collagen solubility profile in the posterior sclera of canine eyes with an ADAMTS10 mutation. Invest Ophthalmol Vis Sci. 2013;54(4):2685–95.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Alon Harris
    • 1
    Email author
  • Josh Gross
    • 1
  • Daniele Prada
    • 4
  • Brent Siesky
    • 1
  • Alice C. Verticchio Vercellin
    • 1
    • 2
    • 3
  • Lauren Saint
    • 1
  • Giovanna Guidoboni
    • 4
  1. 1.Department of OphthalmologyIndiana University School of MedicineIndianapolisUSA
  2. 2.Glaucoma Unit, Istituto di Ricovero e Cura a Carattere Scientifico, Fondazione G.B. BiettiIndianapolisItaly
  3. 3.University Eye Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Policlinico San MatteoPaviaItaly
  4. 4.Department of Mathematical SciencesIndiana University Purdue University IndianapolisIndianapolisUSA

Personalised recommendations