Retinal Vessels Changes During the Low Cerebrospinal Fluid Situation

  • Lu Liu
  • Caixia Lin
  • Ningli WangEmail author
Part of the Advances in Visual Science and Eye Diseases book series (AVSED, volume 1)


Glaucoma is an optic neuropathy characterized by optic disc cupping and visual field loss. Its pathogenesis mainly involves mechanical and vascular factors, the mechanical theory claims that high intraocular pressure (IOP) causes a deformation of the optic nerve head (ONH), and the vascular theory claims that glaucomatous optic neuropathy is the consequence of insufficient blood supply due to IOP elevation and other risk factors. Up to now, IOP is the only modifiable risk factor for glaucoma. Nevertheless, in some glaucoma patients, the progression of disease continues despite IOP reduction, indicating that vascular disturbance may play a more important role in the development of glaucoma in these patients.


  1. 1.
    Volkov VV. Essential element of the glaucomatous process neglected in clinical practice. Oftalmol Zh. 1976;31(7):500–4.PubMedGoogle Scholar
  2. 2.
    Morgan WH, Yu DY, Cooper RL, Alder VA, Cringle SJ, Constable IJ. The influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient. Invest Ophthalmol Vis Sci. 1995;36(11):2163–4.Google Scholar
  3. 3.
    Berdahl JP, Allingham RR, Johnson DH. Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology. 2008;115(5):763.CrossRefGoogle Scholar
  4. 4.
    Ren R, Jonas JB, Tian G, Zhen Y, Ma K, Li S, Wang H, Li B, Zhang X, Wang N. Cerebrospinal fluid pressure in glaucoma : a prospective study. Ophthalmology. 2010;117(2):259–66.CrossRefGoogle Scholar
  5. 5.
    Ren R, Wang N, Zhang X, Cui T, Jonas JB. Trans-lamina cribrosa pressure difference correlated with neuroretinal rim area in glaucoma. Graefes Arch Clin Exp Ophthalmol. 2011;249(7):1057.CrossRefGoogle Scholar
  6. 6.
    Jonas JB, Wang N, Yang D, Ritch R, Panda-Jonas S. Facts and myths of cerebrospinal fluid pressure for the physiology of the eye. Prog Retin Eye Res. 2015;46:67–83.CrossRefGoogle Scholar
  7. 7.
    Dongqi H, Zeqin R. A biomathematical model for pressure-dependent lamina cribrosa behavior. J Biomech. 1999;32(6):579–84.CrossRefGoogle Scholar
  8. 8.
    Chen BH, Drucker MD, Louis KM, Richards DW. Progression of normal-tension glaucoma after ventriculoperitoneal shunt to decrease cerebrospinal fluid pressure. J Glaucoma. 2016;25(1):e50–2.CrossRefGoogle Scholar
  9. 9.
    Zhang Z, Liu D, Jonas JB, Wu S, Kwong JM, Zhang J, Liu Q, Li L, Lu Q, Yang D, Wang J, Wang N. Axonal transport in the rat optic nerve following short-term reduction in cerebrospinal fluid pressure or elevation in intraocular pressure. Invest Ophthalmol Vis Sci. 2015;56(8):4257–66.CrossRefGoogle Scholar
  10. 10.
    Guidoboni G, Harris A, Cassani S, Arciero J, Siesky B, Amireskandari A, Tobe L, Egan P, Januleviciene I, Park J. Intraocular pressure, blood pressure, and retinal blood flow autoregulation: a mathematical model to clarify their relationship and clinical relevance. Invest Ophthalmol Vis Sci. 2014;55(7):4105–18.CrossRefGoogle Scholar
  11. 11.
    Mann C, Anders F, Liu H, et al. Morphological and quantitative changes in retinal and optic nerve vessels in experimental glaucoma model with elevated IOP for 7 weeks. Klin Monbl Augenheilkd. 2018;
  12. 12.
    Sugiyama K, Gu Z, Sugiyama K, Gu Z, Yamamoto CT, Kitazawa Y. Optic nerve and peripapillary choroidal microvasculature of the rat eye. Invest Ophthalmol Vis Sci. 1999;40(13):3084.PubMedGoogle Scholar
  13. 13.
    Flammer J, Orgul S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, Renard JP, Stefansson E. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21(4):359–93.CrossRefGoogle Scholar
  14. 14.
    Killer HE, Laeng HR, Flammer J, Groscurth P. Architecture of arachnoid trabeculae, pillars, and septa in the subarachnoid space of the human optic nerve: anatomy and clinical considerations. Br J Ophthalmol. 2003;87(6):777–81.CrossRefGoogle Scholar
  15. 15.
    Killer HE, Jaggi GP, Flammer J, Miller NR, Huber AR. The optic nerve: a new window into cerebrospinal fluid composition? Am J Ophthalmol. 2006;142(3):1027–30.CrossRefGoogle Scholar
  16. 16.
    Morgan WH, Yu DY, Alder VA, Cringle SJ, Cooper RL, House PH, Constable IJ. The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure. Invest Ophthalmol Vis Sci. 1998;39(8):1419–28.PubMedGoogle Scholar
  17. 17.
    Jaggi GP, Harlev M, Ziegler U, Dotan S, Miller NR, Killer HE. Cerebrospinal fluid segregation optic neuropathy: an experimental model and a hypothesis. Br J Ophthalmol. 2010;94(8):1088–93.CrossRefGoogle Scholar
  18. 18.
    Hou R, Zhang Z, Yang D, Wang H, Chen W, Li Z, Sang J, Liu S, Cao Y, Xie X, Ren R, Zhang Y, Sabel BA, Wang N. Intracranial pressure (ICP) and optic nerve subarachnoid space pressure (ONSP) correlation in the optic nerve chamber: the Beijing Intracranial and Intraocular Pressure (iCOP) study. Brain Res. 2016;1635:201–8.CrossRefGoogle Scholar
  19. 19.
    Sugiyama K, Cioffi GA, Bacon DR, Van Buskirk EM. Optic nerve and peripapillary choroidal microvasculature in the primate. J Glaucoma. 1994;3(Suppl 1):S45–54.PubMedGoogle Scholar
  20. 20.
    Amerasinghe N, Aung T, Cheung N, Fong CW, Wang JJ, Mitchell P, Saw SM, Wong TY. Evidence of retinal vascular narrowing in glaucomatous eyes in an Asian population. Invest Ophthalmol Vis Sci. 2008;49(12):5397–402.CrossRefGoogle Scholar
  21. 21.
    Mitchell P, Leung H, Wang JJ, Rochtchina E, Lee AJ, Wong TY, Klein R. Retinal vessel diameter and open-angle glaucoma: the Blue Mountains Eye Study. Ophthalmology. 2005;112(2):245–50.CrossRefGoogle Scholar
  22. 22.
    Kim JM, Sae Kim M, Jang HJ, Ho Park K, Caprioli J. The association between retinal vessel diameter and retinal nerve fiber layer thickness in asymmetric normal tension glaucoma patients. Invest Ophthalmol Vis Sci. 2012;53(9):5609–14.CrossRefGoogle Scholar
  23. 23.
    Kaiser HJ, Schoetzau A, Stumpfig D, Flammer J. Blood-flow velocities of the extraocular vessels in patients with high-tension and normal-tension primary open-angle glaucoma. Am J Ophthalmol. 1997;123(3):320–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren HospitalCapital Medical UniversityBeijingChina
  2. 2.Beijing Ophthalmology & Visual Sciences Key LaboratoryBeijingChina

Personalised recommendations