Advertisement

Translamina Cribrosa Pressure Difference-Related Animal Models

  • Jing Li
  • Ningli WangEmail author
Chapter
Part of the Advances in Visual Science and Eye Diseases book series (AVSED, volume 1)

Abstract

Glaucoma is a progressive optic neuropathy that leads to structural changes in retinal nerve fiber layer (RNFL) and optic nerve head (ONH), as well as characterized changes in the visual field (VF) which may result in irreversible visual impairment and blindness [1]. Intraocular pressure (IOP) is always thought to be a major factor in the pathogenesis of glaucoma. Animal model, as a vital method, plays an irreplaceable part in studying the mechanisms of disease progression and developing therapeutic strategies to control the progression of various kinds of diseases including glaucoma. Over the years, high IOP animal models have been established by many researchers, in order to study the etiology, pathogenesis, diagnosis, treatment, and prognosis of glaucoma. Recently, more and more researchers have found that low orbital cerebrospinal fluid pressure (CSFP) may have a role similar to an elevated IOP in the pathogenesis of glaucomatous optic neuropathy [2–5]. The concept of translamina cribrosa pressure difference, which means the difference between IOP and ICP, has recently been accepted. Thus, not only high/low IOP but also high/low CSFP animal models were more frequently studied in recent years.

References

  1. 1.
    Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901–11.CrossRefGoogle Scholar
  2. 2.
    Hou R, Zhang Z, Yang D, Wang H, Chen W, Li Z, Sang J, Liu S, Cao Y, Xie X, Ren R, Zhang Y, Sabel BA, Wang N. Intracranial pressure (ICP) and optic nerve subarachnoid space pressure (ONSP) correlation in the optic nerve chamber: the Beijing Intracranial and Intraocular Pressure (iCOP) study. Brain Res. 2016;1635:201–8.CrossRefGoogle Scholar
  3. 3.
    Ren R, Jonas JB, Tian G, Zhen Y, Ma K, Li S, Wang H, Li B, Zhang X, Wang N. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology. 2010;117(2):259–66.CrossRefGoogle Scholar
  4. 4.
    Yang D, Fu J, Hou R, Liu K, Jonas JB, Wang H, Chen W, Li Z, Sang J, Zhang Z, Liu S, Cao Y, Xie X, Ren R, Lu Q, Weinreb RN, Wang N. Optic neuropathy induced by experimentally reduced cerebrospinal fluid pressure in monkeys. Invest Ophthalmol Vis Sci. 2014;55(5):3067–73.CrossRefGoogle Scholar
  5. 5.
    Zhang Z, Wu S, Jonas JB, Zhang J, Liu K, Lu Q, Wang N. Dynein, kinesin and morphological changes in optic nerve axons in a rat model with cerebrospinal fluid pressure reduction: the Beijing Intracranial and Intraocular Pressure (iCOP) study. Acta Ophthalmol. 2016;94(3):266–75.CrossRefGoogle Scholar
  6. 6.
    Resch ZT, Fautsch MP. Glaucoma-associated myocilin: a better understanding but much more to learn. Exp Eye Res. 2009;88(4):704–12.CrossRefGoogle Scholar
  7. 7.
    Senatorov V, Malyukova I, Fariss R, Wawrousek EF, Swaminathan S, Sharan SK, Tomarev S. Expression of mutated mouse myocilin induces open-angle glaucoma in transgenic mice. J Neurosci. 2006;26(46):11903–14.CrossRefGoogle Scholar
  8. 8.
    Tseng HC, Riday TT, McKee C, Braine CE, Bomze H, Barak I, Marean-Reardon C, John SW, Philpot BD, Ehlers MD. Visual impairment in an optineurin mouse model of primary open-angle glaucoma. Neurobiol Aging. 2015;36(6):2201–12.CrossRefGoogle Scholar
  9. 9.
    Wilson GN, Inman DM, Dengler Crish CM, Smith MA, Crish SD. Early pro-inflammatory cytokine elevations in the DBA/2J mouse model of glaucoma. J Neuroinflammation. 2015;12:176.CrossRefGoogle Scholar
  10. 10.
    Jia L, Cepurna WO, Johnson EC, Morrison JC. Patterns of intraocular pressure elevation after aqueous humor outflow obstruction in rats. Invest Ophthalmol Vis Sci. 2000;41(6):1380–5.PubMedGoogle Scholar
  11. 11.
    Tezel G, Yang X, Luo C, Cai J, Powell DW. An astrocyte-specific proteomic approach to inflammatory responses in experimental rat glaucoma. Invest Ophthalmol Vis Sci. 2012;53(7):4220–33.CrossRefGoogle Scholar
  12. 12.
    Salinas-Navarro M, Alarcón-Martínez L, Valiente-Soriano FJ, Jiménez-López M, Mayor-Torroglosa S, Avilés-Trigueros M, Villegas-Pérez MP, Vidal-Sanz M. Ocular hypertension impairs optic nerve axonal transport leading to progressive retinal ganglion cell degeneration. Exp Eye Res. 2010;90(1):168–83.CrossRefGoogle Scholar
  13. 13.
    Bai Y, Zhu Y, Chen Q, Xu J, Sarunic MV, Saragovi UH, Zhuo Y. Validation of glaucoma-like features in the rat episcleral vein cauterization model. Chin Med J (Engl). 2014;127(2):359–64.Google Scholar
  14. 14.
    Kanamori N. M, Nakanishi Y, Nagai A, Mukuno H, Yamada Y, Negi A. Akt is activated via insulin/IGF-1 receptor in rat retina with episcleral vein cauterization. Brain Res. 2004;1022(1-2):195–204.CrossRefGoogle Scholar
  15. 15.
    Urcola JH, Hernández M, Vecino E. Three experimental glaucoma models in rats: comparison of the effects of intraocular pressure elevation on retinal ganglion cell size and death. Exp Eye Res. 2006;83(2):429–37.CrossRefGoogle Scholar
  16. 16.
    Lentschener C, Fredi-Reygrobellet D, Bouaziz H, Mazoit JX, Niessen F, Benhamou D. Effect of CO(2) pneumoperitoneum on early cellular markers of retinal ischemia in rabbits with alpha-chymotrypsin-induced glaucoma. Surg Endosc. 2000;14(11):1057–61.CrossRefGoogle Scholar
  17. 17.
    Matsumoto Y, Kanamori A, Nakamura M, Negi A. Rat chronic glaucoma model induced by intracameral injection of microbeads suspended in sodium sulfate-sodium hyaluronate. Jpn J Ophthalmol. 2014;58(3):290–7.CrossRefGoogle Scholar
  18. 18.
    Manni G, Lambiase A, Centofanti M, Mattei E, De Gregorio A, Aloe L, de Feo G. Histopathological evaluation of retinal damage during intraocular hypertension in rabbit: involvement of ganglion cells and nerve fiber layer. Graefes Arch Clin Exp Ophthalmol. 1996;234(Suppl1):S209–13.CrossRefGoogle Scholar
  19. 19.
    Ito YA, Belforte N, Cueva Vargas JL, Di Polo AA. Magnetic microbead occlusion model to induce ocular hypertension-dependent glaucoma in mice. J Vis Exp. 2016;(109):e53731.Google Scholar
  20. 20.
    Gaasterland D, Kupfer C. Experimental glaucoma in the rhesus monkey. Invest Ophthalmol. 1974;13:455–7.PubMedGoogle Scholar
  21. 21.
    Brooks DE, Kallberg ME, Komaromy AM, Ollivier FJ, Lambrou GN. Optic nerve head neuroretinal rim blood flow differences in monkeys with laser-induced glaucoma. Vet Ophthalmol. 2005;8(2):113–9.CrossRefGoogle Scholar
  22. 22.
    Liu K, Wang N, Peng X, Yang D, Wang C, Zeng H. Long-term effect of laser-induced ocular hypertension on the cone electroretinogram and central macular thickness in monkeys. Photomed Laser Surg. 2014;32(7):371–8.CrossRefGoogle Scholar
  23. 23.
    Lessell S, Kuwabara T. Experimental alpha-chymotrypsin glaucoma. Arch Ophthalmol. 1969;81:853–64.CrossRefGoogle Scholar
  24. 24.
    Quigley HA, Addicks EM. Chronic experimental glaucoma in primates. I. Production of elevated intraocular pressure by anterior chamber injection of autologous ghost red blood cells. Invest Ophthalmol Vis Sci. 1980;19:126–36.PubMedGoogle Scholar
  25. 25.
    Zhao D, He Z, Vingrys AJ, Bui BV, Nguyen CT. The effect of intraocular and intracranial pressure on retinal structure and function in rats. Physiol Rep. 2015;3(8):pii: e12507.CrossRefGoogle Scholar
  26. 26.
    Albon J, Farrant S, Akhtar S, Young R, Boulton ME, Smith G, Taylor M, Guggenheim J, Morgan JE. Connective tissue structure of the tree shrew optic nerve and associated ageing changes. Invest Ophthalmol Vis Sci. 2007;48(5):2134–44.CrossRefGoogle Scholar
  27. 27.
    Link BA, Gray MP, Smith RS, John SW. Intraocular pressure in zebrafish: comparison of inbred strains and identification of a reduced melanin mutant with raised IOP. Invest Ophthalmol Vis Sci. 2004;45(12):4415–22.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Beijing Institute of OphthalmologyBeijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina

Personalised recommendations