Techniques in Measuring Intraocular and Intracranial Pressure Gradients

  • Xiaobin Xie
  • April Peszel
  • Feras Kamel Rizeq
  • Chenyu Sun
  • Diya Yang
  • Ningli WangEmail author
Part of the Advances in Visual Science and Eye Diseases book series (AVSED, volume 1)


As a part of the central nervous system, the optic nerve goes through the comparatively independent intraocular and retrobulbar pressurized cerebrospinal fluid cavity. Additionally, the central retinal vein and artery pass from the optic nerve head through the optic nerve and the orbital cerebrospinal fluid (CSF) space. The CSF pressure, as the counter pressure against intraocular pressure (IOP) from the opposite side of the lamina cribrosa, may have pathophysiologic importance for several intracranial and intraocular pressure gradient-related ophthalmic disorders, such as glaucomatous optic neuropathy associated with CSF pressure dysregulation [1–12], optic neuropathy secondary to idiopathic intracranial hypertension [13–19], visual impairment syndrome in space [20–22], and retinal vein occlusion [23].



We would like to thank Ning Tian for drawing diagrams for this chapter. Ning Tian, designer at Beijing Tianming Ophthalmological Novel Technology Development Corporation, 17 Hougou Lane, Chongwenmen, Beijing, 100005, China.


  1. 1.
    Ren R, Jonas JB, Tian G, et al. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology. 2010;117(2):259–66.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Berdahl JP, Allingham RR, Johnson DH. Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology. 2008;115(5):763–8.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Wang N, Xie X, Yang D, et al. Orbital cerebrospinal fluid space in glaucoma: the Beijing iCOP study. Ophthalmology. 2012;Google Scholar
  4. 4.
    Berdahl JP, Fautsch MP, Stinnett SS, Allingham RR. Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. Invest Ophthalmol Vis Sci. 2008;49(12):5412–8.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Ren R, Wang N, Zhang X, Cui T, Jonas JB. Trans-lamina cribrosa pressure difference correlated with neuroretinal rim area in glaucoma. Graefes Arch Clin Exp Ophthalmol. 2011;249(7):1057–63.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Jonas JB, Wang NL, Wang YX, et al. Estimated trans-lamina cribrosa pressure difference versus intraocular pressure as biomarker for open-angle glaucoma. The Beijing Eye Study. Acta Ophthalmol. 2011;93(1):e7–e13.CrossRefGoogle Scholar
  7. 7.
    Jonas JB, Wang N, Wang YX, You QS, Yang D, Xu L. Ocular hypertension: general characteristics and estimated cerebrospinal fluid pressure. The Beijing Eye Study. PLoS One. 2011;9(7):e100533.CrossRefGoogle Scholar
  8. 8.
    Ren R, Zhang X, Wang N, Li B, Tian G, Jonas JB. Cerebrospinal fluid pressure in ocular hypertension. Acta Ophthalmol. 2011;89(2):e142–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Bayer AU, Ferrari F, Erb C. High occurrence rate of glaucoma among patients with Alzheimer’s disease. Eur Neurol. 2002;47(3):165–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Wostyn P, Audenaert K, De Deyn PP. More advanced Alzheimer’s disease may be associated with a decrease in cerebrospinal fluid pressure. Cerebrospinal Fluid Res. 2009;6:14.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Tamura H, Kawakami H, Kanamoto T, et al. High frequency of open-angle glaucoma in Japanese patients with Alzheimer’s disease. J Neurol Sci. 2006;246(1-2):79–83.PubMedCrossRefGoogle Scholar
  12. 12.
    Wostyn P, De Groot V, Van Dam D, Audenaert K, De Deyn PP. Senescent changes in cerebrospinal fluid circulatory physiology and their role in the pathogenesis of normal-tension glaucoma. Am J Ophthalmol. 2013;156(1):5–14 e12.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Tso MO, Hayreh SS. Optic disc edema in raised intracranial pressure. IV. Axoplasmic transport in experimental papilledema. Arch Ophthalmol. 1977;95(8):1458–62.PubMedCrossRefGoogle Scholar
  14. 14.
    Hayreh MS, Hayreh SS. Optic disc edema in raised intracranial pressure. I. Evolution and resolution. Arch Ophthalmol. 1977;95(7):1237–44.PubMedCrossRefGoogle Scholar
  15. 15.
    Hayreh SS, Hayreh MS. Optic disc edema in raised intracranial pressure. II. Early detection with fluorescein fundus angiography and stereoscopic color photography. Arch Ophthalmol. 1977;95(7):1245–54.PubMedCrossRefGoogle Scholar
  16. 16.
    Tso MO, Hayreh SS. Optic disc edema in raised intracranial pressure. III. A pathologic study of experimental papilledema. Arch Ophthalmol. 1977;95(8):1448–57.PubMedCrossRefGoogle Scholar
  17. 17.
    Hayreh SS. Optic disc edema in raised intracranial pressure. V. Pathogenesis. Arch Ophthalmol. 1977;95(9):1553–65.PubMedCrossRefGoogle Scholar
  18. 18.
    Hayreh SS. Optic disc edema in raised intracranial pressure. VI. Associated visual disturbances and their pathogenesis. Arch Ophthalmol. 1977;95(9):1566–79.PubMedCrossRefGoogle Scholar
  19. 19.
    Laemmer R, Heckmann JG, Mardin CY, Schwab S, Laemmer AB. Detection of nerve fiber atrophy in apparently effectively treated papilledema in idiopathic intracranial hypertension. Graefes Arch Clin Exp Ophthalmol. 2010;248(12):1787–93.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang LF, Hargens AR. Intraocular/Intracranial pressure mismatch hypothesis for visual impairment syndrome in space. Aviat Space Environ Med. 2014;85(1):78–80.PubMedCrossRefGoogle Scholar
  21. 21.
    Mader TH, Gibson CR, Pass AF, et al. Optic disc edema in an astronaut after repeat long-duration space flight. J Neuroophthalmol. 2013;33(3):249–55.PubMedCrossRefGoogle Scholar
  22. 22.
    Mader TH, Gibson CR, Pass AF, et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology. 2011;118(10):2058–69.PubMedCrossRefGoogle Scholar
  23. 23.
    Jonas JB, Wang N, Wang YX, et al. Incident retinal vein occlusions and estimated cerebrospinal fluid pressure. The Beijing Eye Study. Acta Ophthalmol. 2015;93(7):e522–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Mansouri K, Weinreb RN. Ambulatory 24-h intraocular pressure monitoring in the management of glaucoma. Curr Opin Ophthalmol. 2015;26(3):214–20.PubMedCrossRefGoogle Scholar
  25. 25.
    Kawoos U, McCarron RM, Auker CR, Chavko M. Advances in intracranial pressure monitoring and its significance in managing traumatic brain injury. Int J Mol Sci. 2015;16(12):28979–97.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Lenfeldt N, Koskinen LO, Bergenheim AT, Malm J, Eklund A. CSF pressure assessed by lumbar puncture agrees with intracranial pressure. Neurology. 2007;68(2):155–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhong J, Dujovny M, Park HK, Perez E, Perlin AR, Diaz FG. Advances in ICP monitoring techniques. Neurol Res. 2003;25(4):339–50.PubMedCrossRefGoogle Scholar
  28. 28.
    Bhatia A, Gupta AK. Neuromonitoring in the intensive care unit. I. Intracranial pressure and cerebral blood flow monitoring. Intensive Care Med. 2007;33(7):1263–71.PubMedCrossRefGoogle Scholar
  29. 29.
    Guillaume J, Janny P. Continuous intracranial manometry; importance of the method and first results. Rev Neurol (Paris). 1951;84(2):131–42.Google Scholar
  30. 30.
    Kakarla UK, Kim LJ, Chang SW, Theodore N, Spetzler RF. Safety and accuracy of bedside external ventricular drain placement. Neurosurgery. 2008;63(1 Suppl 1):ONS162–6; discussion ONS166–167.PubMedGoogle Scholar
  31. 31.
    Park YG, Woo HJ, Kim E, Park J. Accuracy and safety of bedside external ventricular drain placement at two different cranial sites : Kocher’s point versus forehead. J Korean Neurosurg Soc. 2011;50(4):317–21.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Woernle CM, Burkhardt JK, Bellut D, Krayenbuehl N, Bertalanffy H. Do iatrogenic factors bias the placement of external ventricular catheters?—a single institute experience and review of the literature. Neurol Med Chir (Tokyo). 2011;51(3):180–6.CrossRefGoogle Scholar
  33. 33.
    Patil V, Gupta R, San Jose Estepar R, et al. Smart stylet: the development and use of a bedside external ventricular drain image-guidance system. Stereotact Funct Neurosurg. 2015;93(1):50–8.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Sarrafzadeh A, Smoll N, Schaller K. Guided (VENTRI-GUIDE) versus freehand ventriculostomy: study protocol for a randomized controlled trial. Trials. 2014;15:478.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Munch E, Weigel R, Schmiedek P, Schurer L. The Camino intracranial pressure device in clinical practice: reliability, handling characteristics and complications. Acta Neurochir. 1998;140(11):1113–9; discussion 1119–1120.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Chambers KR, Kane PJ, Choksey MS, Mendelow AD. An evaluation of the camino ventricular bolt system in clinical practice. Neurosurgery. 1993;33(5):866–8.PubMedGoogle Scholar
  37. 37.
    Bruder N, N’Zoghe P, Graziani N, Pelissier D, Grisoli F, Francois G. A comparison of extradural and intraparenchymatous intracranial pressures in head injured patients. Intensive Care Med. 1995;21(10):850–2.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Gelabert-Gonzalez M, Ginesta-Galan V, Sernamito-Garcia R, Allut AG, Bandin-Dieguez J, Rumbo RM. The Camino intracranial pressure device in clinical practice. Assessment in a 1000 cases. Acta Neurochir. 2006;148(4):435–41.PubMedCrossRefGoogle Scholar
  39. 39.
    Piper IR, Miller JD. The evaluation of the wave-form analysis capability of a new strain-gauge intracranial pressure MicroSensor. Neurosurgery. 1995;36(6):1142–4; discussion 1144–1145.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Citerio G, Piper I, Cormio M, et al. Bench test assessment of the new Raumedic Neurovent-P ICP sensor: a technical report by the BrainIT group. Acta Neurochir. 2004;146(11):1221–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Allin D, Czosnyka M, Czosnyka Z. Laboratory testing of the Pressio intracranial pressure monitor. Neurosurgery. 2008;62(5):1158–61; discussion 1161.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Lang JM, Beck J, Zimmermann M, Seifert V, Raabe A. Clinical evaluation of intraparenchymal Spiegelberg pressure sensor. Neurosurgery. 2003;52(6):1455–9; discussion 1459PubMedCrossRefGoogle Scholar
  43. 43.
    Ghajar J. Intracranial pressure monitoring techniques. New Horiz. 1995;3(3):395–9.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Raabe A, Totzauer R, Meyer O, Stockel R, Hohrein D, Schoche J. Reliability of epidural pressure measurement in clinical practice: behavior of three modern sensors during simultaneous ipsilateral intraventricular or intraparenchymal pressure measurement. Neurosurgery. 1998;43(2):306–11.PubMedCrossRefGoogle Scholar
  45. 45.
    Miller JD, Bobo H, Kapp JP. Inaccurate pressure readings for subarachnoid bolts. Neurosurgery. 1986;19(2):253–5.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Raboel PH, Bartek J Jr, Andresen M, Bellander BM, Romner B. Intracranial pressure monitoring: invasive versus non-invasive methods-a review. Crit Care Res Prac. 2012;2012:950393.Google Scholar
  47. 47.
    Eide PK. Comparison of simultaneous continuous intracranial pressure (ICP) signals from ICP sensors placed within the brain parenchyma and the epidural space. Med Eng Phys. 2008;30(1):34–40.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Guyot LL, Dowling C, Diaz FG, Michael DB. Cerebral monitoring devices: analysis of complications. Acta Neurochir Suppl. 1998;71:47–9.PubMedGoogle Scholar
  49. 49.
    Martinez-Manas RM, Santamarta D, de Campos JM, Ferrer E. Camino intracranial pressure monitor: prospective study of accuracy and complications. J Neurol Neurosurg Psychiatry. 2000;69(1):82–6.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Brain Trauma F, American Association of Neurological S, Congress of Neurological S, et al. Guidelines for the management of severe traumatic brain injury. VII. Intracranial pressure monitoring technology. J Neurotrauma. 2007;24(Suppl 1):S45–54.Google Scholar
  51. 51.
    Steiner LA, Andrews PJ. Monitoring the injured brain: ICP and CBF. Br J Anaesth. 2006;97(1):26–38.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Behrens A, Lenfeldt N, Qvarlander S, Koskinen LO, Malm J, Eklund A. Are intracranial pressure wave amplitudes measurable through lumbar puncture? Acta Neurol Scand. 2013;127(4):233–41.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Colledge NR, Walker BR, Ralston SH, editors. Davidson’s principles and practice of medicine. 21st ed. Edinburgh: Churchill Livingstone/Elsevier; 2010. p. 1147–8. ISBN 978-0-7020-3084-0.Google Scholar
  54. 54.
    March K. Intracranial pressure monitoring: why monitor? AACN Clin Issues. 2005;16(4):456–75.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Hanlo P, Peters R, Gooskens R, et al. Monitoring intracranial dynamics by transcranial Doppler—a new Doppler index: trans systolic time. Ultrasound Med Biol. 1995;21(5):613–21.PubMedCrossRefGoogle Scholar
  56. 56.
    Popovic D, Khoo M, Lee S. Noninvasive monitoring of intracranial pressure. Recent Patents on Biomedical Engineering. 2009;2(3):165–79.CrossRefGoogle Scholar
  57. 57.
    Petkus V, Ragauskas A, Jurkonis R. Investigation of intracranial media ultrasonic monitoring model. Ultrasonics. 2002;40(1):829–33.PubMedCrossRefGoogle Scholar
  58. 58.
    Ragauskas A, Daubaris G, Ragaisis V, Petkus V. Implementation of non-invasive brain physiological monitoring concepts. Med Eng Phys. 2003;25(8):667–78.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Ragauskas A DG, Inventor. Method and apparatus for non-invasively deriving and indicating of dynamic characteristics of the human and animal intracranial media. US patent 5,388,5831995.Google Scholar
  60. 60.
    Buhre W, Heinzel F, Grund S, Sonntag H, Weyland A. Extrapolation to zero-flow pressure in cerebral arteries to estimate intracranial pressure. Br J Anaesth. 2003;90(3):291–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Ursino M, Ter Minassian A, Lodi C, Beydon L. Cerebral hemodynamics during arterial and CO2 pressure changes: in vivo prediction by a mathematical model. Am J Phys Heart Circ Phys. 2000;279(5):H2439–55.Google Scholar
  62. 62.
    Miao J, Benkeser PJ, Nichols FT. A computer-based statistical pattern recognition for doppler spectral waveforms of intracranial blood flow. Comput Biol Med. 1996;26(1):53–63.PubMedCrossRefGoogle Scholar
  63. 63.
    Cardim D, Robba C, Bohdanowicz M, et al. Non-invasive monitoring of intracranial pressure using transcranial doppler ultrasonography: is it possible? Neurocrit Care. 2016;25(3):473–91.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Maeda H, Matsumoto M, Handa N, et al. Reactivity of cerebral blood flow to carbon dioxide in various types of ischemic cerebrovascular disease: evaluation by the transcranial doppler method. Stroke. 1993;24(5):670–5.PubMedCrossRefGoogle Scholar
  65. 65.
    Yost WT, Cantrell JH, Kushnick PW. Fundamental aspects of pulse phase-locked loop technology-based methods for measurement of ultrasonic velocity. J Acoust Soc Am. 1992;91(3):1456–68.PubMedCrossRefGoogle Scholar
  66. 66.
    Ueno T, Macias BR, Yost WT, Hargens AR. Noninvasive assessment of intracranial pressure waveforms by using pulsed phase lock loop technology. Technical note. J Neurosurg. 2005;103(2):361–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Ueno T, Macias BR, Yost WT, Hargens AR. Pulsed phase lock loop device for monitoring intracranial pressure during space flight. J Gravit Physiol. 2003;10:117–8.Google Scholar
  68. 68.
    Chen H, Wang J, Mao S, Dong W, Yang H. A new method of intracranial pressure monitoring by EEG power spectrum analysis. Can J Neurol Sci. 2012;39(04):483–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Ghosh A, Elwell C, Smith M. Cerebral near-infrared spectroscopy in adults: a work in progress. Anesth Analg. 2012;115(6):1373–83.PubMedCrossRefGoogle Scholar
  70. 70.
    Kampfl A, Pfausler B, Denchev D, Jaring H, Schmutzhard E. Near infrared spectroscopy (NIRS) in patients with severe brain injury and elevated intracranial pressure. Acta Neurochir Suppl. 1997;70:112–4.PubMedGoogle Scholar
  71. 71.
    Weerakkody RA, Czosnyka M, Zweifel C, et al. Near infrared spectroscopy as possible non-invasive monitor of slow vasogenic ICP waves. Acta Neurochir Suppl. 2012;114:181–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Zweifel C, Castellani G, Czosnyka M, et al. Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage. Stroke. 2010;41(9):1963–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Kristiansson H, Nissborg E, Bartek J Jr, Andresen M, Reinstrup P, Romner B. Measuring elevated intracranial pressure through noninvasive methods: a review of the literature. J Neurosurg Anesthesiol. 2013;25(4):372–85.PubMedCrossRefGoogle Scholar
  74. 74.
    Purin V. Measurement of intracranial pressure in children without puncture (new method). Pediatriia. 1964;43:82.PubMedGoogle Scholar
  75. 75.
    Wealthall S, Smallwood R. Methods of measuring intracranial pressure via the fontanelle without puncture. J Neurol Neurosurg Psychiatry. 1974;37(1):88–96.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Singh D, Cronin DS. Investigation of cavitation using a modified Hopkinson apparatus. Dynam Behav Mat. 2015;1:177–83.Google Scholar
  77. 77.
    Swoboda M, Hochman MG, Fritz FJ, Inventor. Non-invasive intracranial pressure sensor. 2008.Google Scholar
  78. 78.
    Nichols WW, McDonald DA, O’Rourke MF. McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. Abingdon: Taylor & Francis; 2005. p. 570.Google Scholar
  79. 79.
    Liu D, Kahn M. Measurement and relationship of subarachnoid pressure of the optic nerve to intracranial pressures in fresh cadavers. Am J Ophthalmol. 1993;116(5):548–56.PubMedCrossRefGoogle Scholar
  80. 80.
    Geeraerts T, Duranteau J, Benhamou D. Ocular sonography in patients with raised intracranial pressure: the papilloedema revisited. Crit Care. 2008;12(3):150.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Gibby W, Cohen M, Goldberg H, Sergott R. Pseudotumor cerebri: CT findings and correlation with vision loss. AJR Am J Roentgenol. 1993;160(1):143–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Soldatos T, Karakitsos D, Chatzimichail K, Papathanasiou M, Gouliamos A, Karabinis A. Optic nerve sonography in the diagnostic evaluation of adult brain injury. Crit Care. 2008;12(3):1.CrossRefGoogle Scholar
  83. 83.
    Kimberly HH, Shah S, Marill K, Noble V. Correlation of optic nerve sheath diameter with direct measurement of intracranial pressure. Acad Emerg Med. 2008;15(2):201–4.PubMedCrossRefGoogle Scholar
  84. 84.
    Rajajee V, Vanaman M, Fletcher JJ, Jacobs TL. Optic nerve ultrasound for the detection of raised intracranial pressure. Neurocrit Care. 2011;15(3):506–15.PubMedCrossRefGoogle Scholar
  85. 85.
    Dubourg J, Javouhey E, Geeraerts T, Messerer M, Kassai B. Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta-analysis. Intensive Care Med. 2011;37(7):1059–68.PubMedCrossRefGoogle Scholar
  86. 86.
    Steinborn M, Friedmann M, Makowski C, Hahn H, Hapfelmeier A, Juenger H. High resolution transbulbar sonography in children with suspicion of increased intracranial pressure. Childs Nerv Syst. 2016;32(4):655–60.PubMedCrossRefGoogle Scholar
  87. 87.
    Weigel M, Lagreze WA, Lazzaro A, Hennig J, Bley TA. Fast and quantitative high-resolution magnetic resonance imaging of the optic nerve at 3.0 tesla. Investig Radiol. 2006;41(2):83–6.CrossRefGoogle Scholar
  88. 88.
    Xie X, Zhang X, Fu J, et al. Noninvasive intracranial pressure estimation by orbital subarachnoid space measurement: the Beijing Intracranial and Intraocular Pressure (iCOP) study. Crit Care. 2013;17(4):R162.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Geeraerts T, Newcombe VF, Coles JP, et al. Use of T2-weighted magnetic resonance imaging of the optic nerve sheath to detect raised intracranial pressure. Crit Care. 2008;12(5):R114.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Querfurth HW, Arms SW, Lichy CM, Irwin WT, Steiner T. Prediction of intracranial pressure from noninvasive transocular venous and arterial hemodynamic measurements: a pilot study. Neurocrit Care. 2004;1(2):183–94.PubMedCrossRefGoogle Scholar
  91. 91.
    Querfurth HW, Lieberman P, Arms S, Mundell S, Bennett M, van Horne C. Ophthalmodynamometry for ICP prediction and pilot test on Mt. Everest. BMC Neurol. 2010;10:106.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Motschmann M, Muller C, Kuchenbecker J, et al. Ophthalmodynamometry: a reliable method for measuring intracranial pressure. Strabismus. 2001;9(1):13–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Firsching R, Schutze M, Motschmann M, Behrens-Baumann W. Venous opthalmodynamometry: a noninvasive method for assessment of intracranial pressure. J Neurosurg. 2000;93(1):33–6.PubMedCrossRefGoogle Scholar
  94. 94.
    Querfurth HW, Arms SW, Lichy CM, Irwin WT, Steiner T. Prediction of intracranial pressure from noninvasive transocular venous and arterial hemodynamic measurements. Neurocrit Care. 2004;1(2):183–94.PubMedCrossRefGoogle Scholar
  95. 95.
    Jonas JB, Pfeil K, Chatzikonstantinou A, Rensch F. Ophthalmodynamometric measurement of central retinal vein pressure as surrogate of intracranial pressure in idiopathic intracranial hypertension. Graefes Arch Clin Exp Ophthalmol. 2008;246(7):1059–60.PubMedCrossRefGoogle Scholar
  96. 96.
    York DH, Pulliam MW, Rosenfeld JG, Watts C. Relationship between visual evoked potentials and intracranial pressure. J Neurosurg. 1981;55(6):909–16.PubMedCrossRefGoogle Scholar
  97. 97.
    York D, Legan M, Benner S, Watts C. Further studies with a noninvasive method of intracranial pressure estimation. Neurosurgery. 1984;14(4):456–61.PubMedCrossRefGoogle Scholar
  98. 98.
    Desch LW. Longitudinal stability of visual evoked potentials in children and adolescents with hydrocephalus. Dev Med Child Neurol. 2001;43(02):113–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Andersson L, Sjolund J, Nilsson J. Flash visual evoked potentials are unreliable as markers of ICP due to high variability in normal subjects. Acta Neurochir. 2012;154(1):121–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Echegaray S, Zamora G, Yu H, Luo W, Soliz P, Kardon R. Automated analysis of optic nerve images for detection and staging of papilledema. Invest Ophthalmol Vis Sci. 2011;52(10):7470–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Heckmann JG, Weber M, Junemann AG, Neundorfer B, Mardin CY. Laser scanning tomography of the optic nerve vs CSF opening pressure in idiopathic intracranial hypertension. Neurology. 2004;62(7):1221–3.PubMedCrossRefGoogle Scholar
  102. 102.
    Rebolleda G, Munoz-Negrete FJ. Follow-up of mild papilledema in idiopathic intracranial hypertension with optical coherence tomography. Invest Ophthalmol Vis Sci. 2009;50(11):5197–200.PubMedCrossRefGoogle Scholar
  103. 103.
    Group OCTS-SCfNIIHS, Auinger P, Durbin M, et al. Baseline OCT measurements in the idiopathic intracranial hypertension treatment trial, part I: quality control, comparisons, and variability. Invest Ophthalmol Vis Sci. 2014;55(12):8180–8.CrossRefGoogle Scholar
  104. 104.
    Group OCTS-SCfNIIHS, Auinger P, Durbin M, et al. Baseline OCT measurements in the idiopathic intracranial hypertension treatment trial, part II: correlations and relationship to clinical features. Invest Ophthalmol Vis Sci. 2014;55(12):8173–9.CrossRefGoogle Scholar
  105. 105.
    Optical Coherence Tomography Substudy C, Group NIIHS. Papilledema outcomes from the optical coherence tomography substudy of the idiopathic intracranial hypertension treatment trial. Ophthalmology. 2015;122(9):1939–1945.e1932.CrossRefGoogle Scholar
  106. 106.
    Kupersmith MJ, Sibony P, Mandel G, et al. Optical coherence tomography of the swollen optic nerve head: deformation of the peripapillary retinal pigment epithelium layer in papilledema. Invest Ophthalmol Vis Sci. 2011;52(9):6558.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Reid A, Marchbanks RJ, Burge DM, et al. The relationship between intracranial pressure and tympanic membrane displacement. Br J Audiol. 1990;24(2):123–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Samuel M, Burge DM, Marchbanks RJ. Quantitative assessment of intracranial pressure by the tympanic membrane displacement audiometric technique in children with shunted hydrocephalus. Eur J Pediatr Surg. 1998;8(4):200–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Gwer S, Sheward V, Birch A, et al. The tympanic membrane displacement analyser for monitoring intracranial pressure in children. Childs Nerv Syst. 2013;29(6):927–33.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Silverman CA, Linstrom CJ. How to measure cerebrospinal fluid pressure invasively and noninvasively. J Glaucoma. 2013;22(Suppl 5):S26–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Yavin D, Luu J, James MT, et al. Diagnostic accuracy of intraocular pressure measurement for the detection of raised intracranial pressure: meta-analysis: a systematic review. J Neurosurg. 2014;121(3):680–7.PubMedCrossRefGoogle Scholar
  112. 112.
    Lashutka MK, Chandra A, Murray HN, Phillips GS, Hiestand BC. The relationship of intraocular pressure to intracranial pressure. Ann Emerg Med. 2004;43(5):585–91.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Sheeran P, Bland JM, Hall GM. Intraocular pressure changes and alterations in intracranial pressure. Lancet. 2000;355(9207):899.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Han Y, McCulley TJ, Horton JC. No correlation between intraocular pressure and intracranial pressure. Ann Neurol. 2008;64(2):221–4.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Czarnik T, Gawda R, Latka D, Kolodziej W, Sznajd-Weron K, Weron R. Noninvasive measurement of intracranial pressure: is it possible? J Trauma. 2007;62(1):207–11.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Li Z, Yang Y, Lu Y, et al. Intraocular pressure vs intracranial pressure in disease conditions: a prospective cohort study (Beijing iCOP study). BMC Neurol. 2012;12:66.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Jonas JB, Wang N, Wang YX, et al. Body height, estimated cerebrospinal fluid pressure and open-angle glaucoma. The beijing eye study. PLoS One. 2011;9(1):e86678.CrossRefGoogle Scholar
  118. 118.
    Jonas JB, Nangia V, Wang N, et al. Trans-lamina cribrosa pressure difference and open-angle glaucoma. The central India eye and medical study. PLoS One. 2013;8(12):e82284.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Asrani S, Samuels B, Thakur M, Santiago C, Kuchibhatla M. Clinical profiles of primary open angle glaucoma versus normal tension glaucoma patients: a pilot study. Curr Eye Res. 2011;36(5):429–35.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Melki S, Todani A, Cherfan G. An implantable intraocular pressure transducer: initial safety outcomes. JAMA Ophthalmol. 2014;132(10):1221–5.PubMedCrossRefGoogle Scholar
  121. 121.
    Koutsonas A, Walter P, Roessler G, Plange N. Implantation of a novel telemetric intraocular pressure sensor in patients with glaucoma (ARGOS study): 1-year results. Invest Ophthalmol Vis Sci. 2015;56(2):1063–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Koskinen LO, Olivecrona M. Clinical experience with the intraparenchymal intracranial pressure monitoring Codman MicroSensor system. Neurosurgery. 2005;56(4):693–8; discussion 693–698.PubMedCrossRefGoogle Scholar
  123. 123.
    Jetzki S, Weinzierl M, Krause I, et al. A multisensor implant for continuous monitoring of intracranial pressure dynamics. IEEE Trans Biomed Circuits Syst. 2012;6(4):356–65.PubMedCrossRefGoogle Scholar
  124. 124.
    Schmitt M, Eymann R, Antes S, Kiefer M. Subdural or intraparenchymal placement of long-term telemetric intracranial pressure measurement devices? Acta Neurochir Suppl. 2012;113:109–13.PubMedCrossRefGoogle Scholar
  125. 125.
    Orakcioglu B, Beynon C, Kentar MM, Eymann R, Kiefer M, Sakowitz OW. Intracranial pressure telemetry: first experience of an experimental in vivo study using a new device. Acta Neurochir Suppl. 2012;114:105–10.PubMedCrossRefGoogle Scholar
  126. 126.
    Liu JH, Kripke DF, Hoffman RE, et al. Nocturnal elevation of intraocular pressure in young adults. Invest Ophthalmol Vis Sci. 1998;39(13):2707–12.PubMedGoogle Scholar
  127. 127.
    Liu JH, Kripke DF, Twa MD, et al. Twenty-four-hour pattern of intraocular pressure in the aging population. Invest Ophthalmol Vis Sci. 1999;40(12):2912–7.PubMedGoogle Scholar
  128. 128.
    Hao J, Zhen Y, Wang H, Yang D, Wang N. The effect of lateral decubitus position on nocturnal intraocular pressure over a habitual 24-hour period in healthy adults. PLoS One. 2014;9(11):e113590.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Wang NL, Hao J, Zhen Y, et al. A population-based investigation of circadian rhythm of intraocular pressure in habitual position among healthy subjects: the handan eye study. J Glaucoma. 2016;25(7):584–9.PubMedCrossRefGoogle Scholar
  130. 130.
    Tsukahara S, Sasaki T. Postural change of IOP in normal persons and in patients with primary wide open-angle glaucoma and low-tension glaucoma. Br J Ophthalmol. 1984;68(6):389–92.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Renard E, Palombi K, Gronfier C, et al. Twenty-four hour (Nyctohemeral) rhythm of intraocular pressure and ocular perfusion pressure in normal-tension glaucoma. Invest Ophthalmol Vis Sci. 2010;51(2):882–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Lee YR, Kook MS, Joe SG, et al. Circadian (24-hour) pattern of intraocular pressure and visual field damage in eyes with normal-tension glaucoma. Invest Ophthalmol Vis Sci. 2012;53(2):881–7.PubMedCrossRefGoogle Scholar
  133. 133.
    Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363(9422):1711–20.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Wostyn P, De Groot V, Audenaert K, De Deyn PP. Are intracranial pressure fluctuations important in glaucoma? Med Hypotheses. 2011;77(4):598–600.PubMedCrossRefGoogle Scholar
  135. 135.
    Wang N, Xie X, Yang D, et al. Orbital cerebrospinal fluid space in glaucoma: the Beijing intracranial and intraocular pressure (iCOP) study. Ophthalmology. 2012;119(10):2065–2073.e2061.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xiaobin Xie
    • 1
  • April Peszel
    • 2
  • Feras Kamel Rizeq
    • 3
  • Chenyu Sun
    • 2
  • Diya Yang
    • 4
  • Ningli Wang
    • 4
    Email author
  1. 1.Eye Hospital, China Academy of Chinese Medical SciencesBeijingChina
  2. 2.The First Affiliated Hospital of Anhui Medical UniversityHefeiChina
  3. 3.Avalon University School of MedicineWillemstadCuraçao
  4. 4.Beijing Institute of Ophthalmology, Beijing Tongren Eye CenterBeijing Tongren Hospital, Capital Medical UniversityBeijingChina

Personalised recommendations