Advertisement

Facts and Myths of Cerebrospinal Fluid Pressure for the Physiology of the Eye

  • Jost B. JonasEmail author
  • Ningli Wang
Chapter
Part of the Advances in Visual Science and Eye Diseases book series (AVSED, volume 1)

Abstract

In a strict sense, the term “optic nerve” is not correct, since the optic nerve is part of the central nervous system and is not similar to a peripheral nerve or other cranial nerves, such as the trigeminal nerve. As part of the central nervous system, the optic nerve is surrounded by the meninges and surrounded by cerebrospinal fluid (CSF). Since the optic nerve as a cerebral neural fascicle leaves the intracranial space, the CSF space extends from the intracranial compartment through the tiny optic canal into the orbit and ends anteriorly at the back of the globe. The tissue pressure in the orbital part of the optic nerve is therefore not equal to the tissue pressure in the orbit (about 2 mmHg [1, 2]) but is at least as high as the pressure in the orbital CSF space or the orbital CSF pressure (CSFP) ([3]; Bellezza et al. 2000; [4–15]). These anatomic relationships may be of profound importance for the physiology and pathophysiology of the optic nerve head (optic disc), which acts as the pressure barrier between the intraocular compartment and the retrobulbar compartment.

Notes

Acknowledgments

The text and figures of this manuscript have appeared previously in a Progress in Retinal and Eye Research review of our work: Jonas JB, Wang N, Yang D, Ritch R, Panda-Jonas S. Facts and myths of cerebrospinal fluid pressure for the physiology of the eye. Prog Retin Eye Res. 2015;46:67–83 [215]. They have been used with permission and edited for this chapter.

References

  1. 1.
    Møller PM. Tissue pressure in the orbit. Acta Ophthalmol. 1954;32:597–604.Google Scholar
  2. 2.
    Moller PM. The pressure in the orbit. Acta Ophthalmol. 1955;(Suppl 43):1–100.Google Scholar
  3. 3.
    Balaratnasingam C, Morgan WH, Johnstone V, Pandav SS, Cringle SJ, Yu DY. Histomorphometric measurements in human and dog optic nerve and an estimation of optic nerve pressure gradients in human. Exp Eye Res. 2009;89:618–28.PubMedCrossRefGoogle Scholar
  4. 4.
    Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT. The optic nerve head as biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005;24:39–73.PubMedCrossRefGoogle Scholar
  5. 5.
    Jonas JB. Ophthalmodynamometry in eyes with dilated episcleral veins. J Glaucoma. 2003a;12:285–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Jonas JB. Ophthalmodynamometric determination of the central retinal vessel collapse pressure correlated with systemic blood pressure. Br J Ophthalmol. 2004;88:501–4.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Jonas JB. Role of cerebrospinal fluid pressure in the pathogenesis of glaucoma. Acta Ophthalmol. 2011;89:505–14.PubMedCrossRefGoogle Scholar
  8. 8.
    Jonas JB, Fernández MC, Naumann GO. Parapapillary atrophy and retinal vessel diameter in nonglaucomatous optic nerve damage. Invest Ophthalmol Vis Sci. 1991a;32:2942–7.PubMedGoogle Scholar
  9. 9.
    Morgan WH, Yu DY, Cooper RL, Alder VA, Cringle SJ, Constable IJ. The influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient. Invest Ophthalmol Vis Sci. 1995;36:1163–72.PubMedGoogle Scholar
  10. 10.
    Morgan WH, Yu DY, Alder VA. The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure. Invest Ophthalmol Vis Sci. 1998;39:1419–28.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Morgan WH, Chauhan BC, Yu DY. Optic disc movement with variations in intraocular and cerebrospinal fluid pressure. Invest Ophthalmol Vis Sci. 2002;43:3236–42.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Morgan WH, Yu DY, Balaratnasingam C. The role of cerebrospinal fluid pressure in glaucoma pathophysiology: the dark side of the optic disc. J Glaucoma. 2008a;17:408–13.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Ren R, Jonas JB, Tian G, Zhen Y, Ma K, Li S, Wang H, Li B, Zhang X, Wang N. Cerebrospinal fluid pressure in glaucoma. A prospective study. Ophthalmology. 2010;117:259–66.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Volkov VV. Essential element of the glaucomatous process neglected in clinical practice. Oftalmol Zh. 1976;31:500–4.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Yablonsky M, Ritch R, Pokorny KS. Effect of decreased intracranial pressure on optic disc. Invest Ophthalmol Vis Sci. 1979;18(Suppl):165.Google Scholar
  16. 16.
    Wang N, Xie X, Yang D, Xian J, Li Y, Ren R, Wang H, Zhang S, Kang Z, Peng X, Sang J, Zhang Z, Jonas JB, Weinreb RN. Orbital cerebrospinal fluid space in glaucoma. Ophthalmology. 2012;119:2065–2073.e1.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Lenfeldt N, Koskinen LO, Bergenheim AT, Malm J, Eklund A. CSF pressure assessed by lumbar puncture agrees with intracranial pressure. Neurology. 2007;68:155–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Jonas JB, Berenshtein E, Holbach L. Anatomic relationship between lamina cribrosa, intraocular space and cerebrospinal fluid space. Invest Ophthalmol Vis Sci. 2003;44:5189–95.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Jonas JB, Berenshtein E, Holbach L. Lamina cribrosa thickness and spatial relationship between intraocular space and cerebrospinal fluid space in highly myopic eyes. Invest Ophthalmol Vis Sci. 2004;48:2660–5.CrossRefGoogle Scholar
  20. 20.
    Jonas JB, Naumann GOH. Parapapillary retinal vessel diameter in normal and glaucoma eyes. II. Correlations. Invest Ophthalmol Vis Sci. 1989;30:1604–11.PubMedGoogle Scholar
  21. 21.
    Jonas JB, Nguyen XN, Naumann GO. Parapapillary retinal vessel diameter in normal and glaucoma eyes. I. Morphometric data. Invest Ophthalmol Vis Sci. 1989;30:1599–603.PubMedGoogle Scholar
  22. 22.
    Jonas JB. Central retinal artery and vein pressure in patients with chronic open-angle glaucoma. Br J Ophthalmol. 2003c;87:949–51.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Firsching R, Schütze M, Motschmann M, Behrens-Baumann W. Venous opthalmodynamometry: a noninvasive method for assessment of intracranial pressure. J Neurosurg. 2000;93:33–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Firsching R, Müller C, Pauli SU, Voellger B, Röhl FW, Behrens-Baumann W. Noninvasive assessment of intracranial pressure with venous ophthalmodynamometry. J Neurosurg. 2011;115:371–4.PubMedCrossRefGoogle Scholar
  25. 25.
    Jonas JB, Groden C. Spontaneous carotid-cavernous sinus fistula diagnosed by ophthalmodynamometry. Acta Ophthalmol. 2003;81:419–20.CrossRefGoogle Scholar
  26. 26.
    Jonas JB, Harder B. Ophthalmodynamometric estimation of cerebrospinal fluid pressure in pseudotumor cerebri. Br J Ophthalmol. 2003;87:361–2.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Jonas JB, Hennerici M. Ophthalmodynamometry for diagnosis of dissection of internal carotid artery. Graefes Arch Clin Exp Ophthalmol. 2006;244:129–30.PubMedCrossRefGoogle Scholar
  28. 28.
    Jonas JB, Pfeil K, Chatzikonstantinou A, Rensch F. Ophthalmodynamometric measurement of central retinal vein pressure as surrogate of intracranial pressure in idiopathic intracranial hypertension. Graefes Arch Clin Ophthalmol. 2008;246:1059–60.CrossRefGoogle Scholar
  29. 29.
    Morgan WH, Yu DY, Cooper RL, Alder VA, Cringle SJ, Constable IJ. Retinal artery and vein pressures in the dog and their relationship to aortic, intraocular, and cerebrospinal fluid pressures. Microvasc Res. 1997;53:211–21.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Jonas JB, Wang N, Wang YX, You QS, Xie XB, Yang D, Xu L. Subfoveal choroidal thickness and cerebrospinal fluid pressure. The Beijing Eye Study 2011. Invest Ophthalmol Vis Sci. 2014b;55:1292–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Jonas JB, Wang N, Yang D. Retinal vein pulsation is in phase with intracranial pressure and not intraocular pressure. Invest Ophthalmol Vis Sci. 2012a;53:6045.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Kain S, Morgan WH, Yu DY. New observations concerning the nature of central retinal vein pulsation. Br J Ophthalmol. 2010;94:854–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Morgan WH, Lind CR, Kain S, Fatehee N, Bala A, Yu DY. Retinal vein pulsation is in phase with intracranial pressure and not intraocular pressure. Invest Ophthalmol Vis Sci. 2012a;53:4676–81.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Morgan WH, Lind CR, Kain S, Fatehee N, Bala A, Yu DY. Author response: retinal vein pulsation is in phase with intracranial pressure and not intraocular pressure. Invest Ophthalmol Vis Sci. 2012b;53:6880.PubMedCrossRefGoogle Scholar
  35. 35.
    Albeck MJ, Borgesen SE, Gjerris F, Schmidt JF, Sørensen PS. Intracranial pressure and cerebrospinal fluid outflow conductance in healthy subjects. J Neurosurg. 1991;74(4):597–600.PubMedCrossRefGoogle Scholar
  36. 36.
    Dickerman RD, Smith GH, Langham-Roof L. Intra-ocular pressure changes during maximal isometric contraction: does this reflect intra-cranial pressure or retinal venous pressure? Neurol Res. 1999;21:243–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Jonas JB, Wang N, Wang YX, You QS, Xie XB, Yang D, Xu L. Body height, estimated cerebrospinal fluid pressure, and open-angle glaucoma. The Beijing Eye Study 2011. PLoS One. 2014a;9:e86678.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Li Z, Yang Y, Lu Y, Liu D, Xu E, Jia J, Yang D, Zhang X, Yang H, Ma D, Wang N. Intraocular pressure vs intracranial pressure in disease conditions: A prospective cohort study (Beijing iCOP study). BMC Neurol. 2012;12:66.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Mansouri K, Liu JH, Weinreb RN, Tafreshi A, Medeiros FA. Analysis of continuous 24-hour intraocular pressure patterns in glaucoma. Invest Ophthalmol Vis Sci. 2012;53:8050–6.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Maurel D, Ixart G, Barbanel G. Effects of acute tilt from orthostatic to headdown antiorthostatic restraint and of sustained restraint on the intra-cerebroventricular pressure in rats. Brain Res. 1996;736:165–73.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Jonas JB, Holbach L, Panda-Jonas S. Peripapillary ring: Histology and correlations. Acta Ophthalmol. 2014i;92:e273–9.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Ren R, Wang N, Li B, Li L, Gao F, Xu X, Jonas JB. Lamina cribrosa and peripapillary sclera histomorphometry in normal and advanced glaucomatous Chinese eyes with normal and elongated axial length. Invest Ophthalmol Vis Sci. 2009;50:2175–84.PubMedCrossRefGoogle Scholar
  43. 43.
    Jonas JB, Mardin CY, Schlötzer-Schrehardt U, Naumann GOH. Morphometry of the human lamina cribrosa surface. Invest Ophthalmol Vis Sci. 1991b;32:401–5.PubMedGoogle Scholar
  44. 44.
    Hayreh SS. Fluids in the anterior part of the optic nerve in health and disease. Surv Ophthalmol. 1978;23:1–25.PubMedCrossRefGoogle Scholar
  45. 45.
    Peyman GA, Apple D. Peroxidase diffusion processes in the optic nerve. Arch Ophthalmol. 1972;88:650–4.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Rodriguez-Peralta LA. Hematic and fluid barriers in the optic nerve. J Comp Neurol. 1966;126:109–21.PubMedCrossRefGoogle Scholar
  47. 47.
    Tsukahara I, Yamashita H. An electron microscopic study on the blood-optic nerve and fluid-optic nerve barrier. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1975;196:239–46.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Harder B, Jonas JB. Frequency of spontaneous pulsations of the central retinal vein in normal eyes. Br J Ophthamol. 2007;91:401–2.CrossRefGoogle Scholar
  49. 49.
    Minckler DS, Tso MOM, Zimmermann LE. A light microscopic, autoradiographic study of axonal transport in the optic nerve head during ocular hypotony, increased intraocular pressure, and papilledema. Am J Ophthalmol. 1976;82:741–57.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Quigley HA, Anderson DR. The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Invest Ophthalmol Vis Sci. 1976;15:606–16.Google Scholar
  51. 51.
    Lashutka MK, Chandra A, Murray HN, Philipps GS, Hiestand BC. The relationship of intraocular pressure to intracranial pressure. Ann Emerg Med. 2004;43:585–91.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Sajjadi SA, Harirchian MH, Sheikhbahaei N, Mohebbi MR, Malekmadani MH, Saberi H. The relation between intracranial and intraocular pressures: study of 50 patients. Ann Neurol. 2006;59:867–70.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Sheeran P, Bland JM, Hall GM. Intra ocular pressure changes and alterations in intra cranial pressure. Lancet. 2000;355:899.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Spentzas T, Henricksen J, Patters AB, Chaum E. Correlation of intraocular pressure with intracranial pressure in children with severe head injuries. Pediatr Crit Care Med. 2010;11:593–8.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Czarnik T, Gawda R, Latka D, Kolodzej W, Sznajd-Weron K, Weron R. Noninvasive measurement of intracranial pressure: is it possible? J Trauma. 2007;62(1):207–11.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Han Y, McCulley TJ, Horton JC. No correlation between intraocular pressure and intracranial pressure. Ann Neurol. 2008;64:221–4.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Kirk T, Jones K, Miller S, Corbett J. Measurement of intraocular and intracranial pressure: is there a relationship? Ann Neurol. 2011;70:323–6.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Hayreh SS, Edwards J. Ophthalmic arterial and venous pressures. Effects of acute intracranial hypertension. Br J Ophthalmol. 1971;55:649–63.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Cullen LK, Steffey EP, Bailey CS, Kortz G, da Silva Curiel J, Bellhorn RW, Woliner MJ, Elliott AR, Jarvis KA. Effect of high PaCO2 and time on cerebrospinal fluid and intraocular pressure in halothane-anesthetized horses. Am J Vet Res. 1990;51:300–4.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Berdahl JP. Systemic parameters associated with cerebrospinal fluid pressure. J Glaucoma. 2013;22(Suppl 5):S17–8.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Mitchell P, Lee AJ, Wang JJ, Rochtchina E. Intraocular pressure over the clinical range of blood pressure: blue mountains eye study findings. Am J Ophthalmol. 2005;140:131–2.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Xu L, Wang H, Wang Y, Jonas JB. Intraocular pressure correlated with arterial blood pressure. The Beijing Eye Study. Am J Ophthalmol. 2007a;144:461–2.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Samuels BC, Hammes NM, Johnson PL, Shekhar A, McKinnon SJ, Allingham RR. Dorsomedial/Perifornical hypothalamic stimulation increases intraocular pressure, intracranial pressure, and the translaminar pressure gradient. Invest Ophthalmol Vis Sci. 2012;53:7328–35.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Balaratnasingam C, Morgan WH, Hazelton ML, House PH, Barry CJ, Chan H, Cringle SJ, Yu DY. Value of retinal vein pulsation characteristics in predicting increased optic disc excavation. Br J Ophthalmol. 2007;91:441–4.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Jonas JB, Jonas SB, Jonas RA, Holbach L, Panda-Jonas S. Histology of the parapapillary region in high myopia. Am J Ophthalmol. 2011a;152:1021–9.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Jonas JB, Nangia V, Matin A, Sinha A, Kulkarni M, Bhojwani K. Intraocular pressure and associated factors. The Central India Eye and Medical Study. J Glaucoma. 2011b;20:405–9.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Kaufmann C, Bachmann LM, Robert YC, Thiel MA. Ocular pulse amplitude in healthy subjects as measured by dynamic contour tonometry. Arch Ophthalmol. 2006;124:1104–8.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Wegner W. Neue Ergebnisse über die pulsatorischen Schwankungen des menschlichen Bulbus und seiner Hüllen. Arch Augenheilkd. 1930;102:1–32.Google Scholar
  69. 69.
    Silver DM, Geyer O. Pressure-volume relation for the living human eye. Curr Eye Res. 2000;20:115–20.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    James CB, Trew DR, Clark K, Smith SE. Factors influencing the ocular pulse—axial length. Graefes Arch Clin Exp Ophthalmol. 1991;229:341–4.PubMedCrossRefGoogle Scholar
  71. 71.
    Wang YX, Jonas JB, Wang N, You QS, Yang D, Xie XB, Xu L. Intraocular pressure and estimated cerebrospinal fluid pressure. The Beijing eye study 2011. PLoS One. 2014;9:e104267.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Anderson DR, Grant WM. The influence of position on intraocular pressure. Investig Ophthalmol. 1973;12:204–12.Google Scholar
  73. 73.
    Baskaran M, Raman K, Ramani KK, Roy J, Vijaya L, Badrinath SS. Intraocular pressure changes and ocular biometry during Sirsasana (headstand posture) in yoga practitioners. Ophthalmology. 2006;113:1327–32.PubMedCrossRefGoogle Scholar
  74. 74.
    Carlson KH, McLaren JW, Topper JE, Brubaker RF. Effect of body position on intraocular pressure and aqueous flow. Invest Ophthalmol Vis Sci. 1987;28:1346–52.PubMedGoogle Scholar
  75. 75.
    Gallardo MJ, Aggarwal N, Cavanagh HD, Whitson JT. Progression of glaucoma associated with the Sirsasana (headstand) yoga posture. Adv Ther. 2006;23:921–5.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Hirooka K, Shiraga F. Relationship between postural change of the intraocular pressure and visual field loss in primary open-angle glaucoma. J Glaucoma. 2003;12:379–82.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Jonas JB. Intraocular pressure during headstand. Ophthalmology. 2007;114:1791; author reply 1791PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Magnaes B. Body position and cerebrospinal fluid pressure. Part 1: clinical studies on the effect of rapid postural changes. J Neurosurg. 1976a;44:687–97.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Magnaes B. Body position and cerebrospinal fluid pressure. Part 2: clinical studies on orthostatic pressure and the hydrostatic indifferent point. J Neurosurg. 1976b;44:698–705.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Tarkkanen A, Leikola J. Postural variations of the intraocular pressure as measured with the Mackay-Marg tonometer. Acta Ophthalmol. 1967;45:569–75.CrossRefGoogle Scholar
  81. 81.
    Weinreb RN, Cook J, Friberg TR. Effect of inverted body position on intraocular pressure. Am J Ophthalmol. 1984;98:784–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Zhang Z, Wang X, Jonas JB, Wang H, Zhang X, Peng X, Ritch R, Tian G, Yang D, Li L, Li J, Wang N. Valsalva manoeuver, intraocular pressure, cerebrospinal fluid pressure, optic disc topography: Beijing Intracranial and Intraocular Pressure Study. Acta Ophthalmol. 2014;92:e475–80.PubMedCrossRefGoogle Scholar
  83. 83.
    Schuman JS, Massicotte EC, Connolly S, Hertzmark E, Mukherji B, Kunen MZ. Increased intraocular pressure and visual field defects in high resistance wind instrument players. Ophthalmology. 2000;107:127–33.PubMedCrossRefGoogle Scholar
  84. 84.
    Kramer LA, Sargsyan AE, Hasan KM, Polk JD, Hamilton DR. Orbital and intracranial effects of microgravity: findings at 3-T MR imaging. Radiology. 2012;263:819–27.PubMedCrossRefGoogle Scholar
  85. 85.
    Mader TH, Gibson CR, Pass AF, Kramer LA, Lee AG, Fogarty J, Tarver WJ, Dervay JP, Hamilton DR, Sargsyan A, Phillips JL, Tran D, Lipsky W, Choi J, Stern C, Kuyumjian R, Polk JD. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology. 2011;118:2058–69.PubMedCrossRefGoogle Scholar
  86. 86.
    Mader TH, Gibson CR, Pass AF, Lee AG, Killer HE, Hansen HC, Dervay JP, Barratt MR, Tarver WJ, Sargsyan AE, Kramer LA, Riascos R, Bedi DG, Pettit DR. Optic disc edema in an astronaut after repeat long-duration space flight. J Neuroophthalmol. 2013;33:249–55.PubMedCrossRefGoogle Scholar
  87. 87.
    Salman MS. Can intracranial pressure be measured non-invasively? Lancet. 1997;350:1367.PubMedCrossRefGoogle Scholar
  88. 88.
    Siaudvytyte L, Januleviciene I, Ragauskas A, Bartusis L, Siesky B, Harris A. Update in intracranial pressure evaluation methods and translaminar pressure gradient role in glaucoma. Acta Ophthalmol. 2014;93(1):9–15.  https://doi.org/10.1111/aos.12502. [Epub ahead of print]CrossRefPubMedGoogle Scholar
  89. 89.
    Hawthorne C, Piper I. Monitoring of intracranial pressure in patients with traumatic brain injury. Front Neurol. 2014;5:121.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Zeng T, Gao L. Management of patients with severe traumatic brain injury guided by intraventricular intracranial pressure monitoring: a report of 136 cases. Chin J Traumatol. 2010;13:146–51.PubMedGoogle Scholar
  91. 91.
    Bauerle J, Nedelmann M. Sonographic assessment of the optic nerve sheath in idiopathic hypertension. J Neurol. 2011;258:2014–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Bellner J, Romner B, Reinstrup P, Kristiansson KA, Ryding E, Brandt Ll. Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol. 2004;62:45–51.PubMedCrossRefGoogle Scholar
  93. 93.
    Chacón M, Pardo C, Puppo C, Curilem M, Landerretche J. Non-invasive intracranial pressure estimation using support vector machine. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:996–9.PubMedGoogle Scholar
  94. 94.
    Potgieter DW, Kippin A, Ngu F, McKean C. Can accurate ultrasonographic measurement of the optic nerve sheath diameter (a non-invasive measure of intracranial pressure) be taught to novice operators in a single training session? Anaesth Intensive Care. 2011;39:95–100.PubMedCrossRefGoogle Scholar
  95. 95.
    Ragauskas A, Daubaris G, Dziugys A, Azelis V, Gedrimas V. Innovative non-invasive method for absolute intracranial pressure measurement without calibration. Acta Neurochir Suppl. 2005;95:357–61.PubMedCrossRefGoogle Scholar
  96. 96.
    Ragauskas A, Matijosaitis V, Zakelis R, Petrikonis K, Rastenyte D, Piper I, Daubaris G. Clinical assessment of noninvasive intracranial pressure absolute value measurement method. Neurology. 2012;78:1684–91.PubMedCrossRefGoogle Scholar
  97. 97.
    Ragauskas A, Bartusis L, Piper I, Zakelis R, Matijosaitis V, Petrikonis K, Rastenyte D. Improved diagnostic value of a TCD-based non-invasive ICP measurement method compared with the sonographic ONSD method for detecting elevated intracranial pressure. Neurol Res. 2014;36:607–14.PubMedCrossRefGoogle Scholar
  98. 98.
    Tain RW, Alperin N. Noninvasive intracranial compliance from MRI-based measurements of transcranial blood and CSF flows: indirect versus direct approach. IEEE Trans Biomed Eng. 2009;56:544–51.PubMedCrossRefGoogle Scholar
  99. 99.
    Xie XB, Zhang XJ, Fu J, Wang H, Jonas JB, Peng X, Tian G, Xian J, Ritch R, Li L, Kang Z, Zhang S, Yang D, Wang N. Beijing iCOP Study Group: Intracranial pressure estimation by orbital subarachnoid space measurement. Crit Care. 2013;17:R162.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Xu P, Kasprowicz M, Bergsneider M, Hu X. Improved noninvasive intracranial pressure assessment with nonlinear kernel regression. IEEE Trans Inf Technol Biomed. 2010;14:971–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Klingerhofer J, Conrad B, Benecke R, Sander D. Intracranial flow patterns at increasing intracranial pressure. Klin Wochenschr. 1987;65:542–5.CrossRefGoogle Scholar
  102. 102.
    Voulgaris SG, Partheni M, Kaliora H, Haftouras N, Pessach IS, Polyzoidis KS. Early cerebral monitoring using the transcranial Doppler pulsatility index in patients with severe brain trauma. Med Sci Monit. 2005;11:CR49–52.PubMedGoogle Scholar
  103. 103.
    Behrens N, Lenfeldt N, Ambarki K, Siesjo P, Peter JC. Transcranial Doppler pulsatility index: not an accurate method to assess intracranial pressure. Neurosurgery. 2010;66:1050–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Brandi G, Béchir M, Sailer S, Haberthür C, Stocker R, Stover JF. Transcranial color-coded duplex sonography allows to assess cerebral perfusion pressure noninvasively following severe traumatic brain injury. Acta Neurochir. 2010;152:965–72.PubMedCrossRefGoogle Scholar
  105. 105.
    Figaji AA, Zwane E, Fieggen AG, Siesjo P, Peter JC. Transcranial Doppler pulsatility index is not a reliable indicator of intracranial pressure in children with severe traumatic brain injury. Surg Neurol. 2009;72:389–94.PubMedCrossRefGoogle Scholar
  106. 106.
    Czonsnyka M. Pulsatility index. J Neurosurg. 2001;94:685–6.Google Scholar
  107. 107.
    Lang EW, Paulat K, Witte C, Zolondz J, Mehdorn HM. Noninvasive intracranial compliance monitoring: technical note and clinical results. J Neurosurg. 2003;98:214–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Reid A, Marchbanks RJ, Burge DM, Martin AM, Bateman DE, Pickard JD, Brightwell AP. The relationship between intracranial pressure and tympanic membrane displacement. Br J Audiol. 1990;24:123–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Shimbles S, Dodd C, Banister K, Mendelow AD, Chambers IR. Clinical comparison of tympanic membrane displacement with invasive ICP measurements. Acta Neurochir Suppl. 2005;95:197–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Jonas JB. Reproducibility of ophthalmodynamometric measurements of the central retinal artery and vein collapse pressure. Br J Ophthalmol. 2003b;87:577–9.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Jonas JB. Ophthalmodynamometric assessment of the central retinal vein collapse pressure in eyes with retinal vein stasis or occlusion. Graefes Arch Clin Exp Ophthalmol. 2003d;241:367–70.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Morgan WH, Hazelton ML, Balaratnasingam C, Chan H, House PH, Barry CJ, Cringle SJ, Yu DY. The association between retinal vein ophthalmodynamometric force change and optic disc excavation. Br J Ophthalmol. 2009;93:594–6.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Pillunat KR, Ventzke S, Spoerl E, Furashova O, Stodtmeister R, Pillunat LE. Central retinal venous pulsation pressure in different stages of primary open-angle glaucoma. Br J Ophthalmol. 2014;98:1374–8.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Stodtmeister R, Oppitz T, Spoerl E, Haustein M, Boehm AG. Contact lens dynamometry: the influence of age. Invest Ophthalmol Vis Sci. 2010;51:6620–4.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Stodtmeister R, Ventzke S, Spoerl E, Boehm AG, Terai N, Haustein M, Pillunat LE. Enhanced pressure in the central retinal vein decreases the perfusion pressure in the prelaminar region of the optic nerve head. Invest Ophthalmol Vis Sci. 2013;54:4698–704.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Morgan WH, Hazelton ML, Azar SL, House PH, Yu DY, Cringle SJ, Balaratnasingam C. Retinal venous pulsation in glaucoma and glaucoma suspects. Ophthalmology. 2004;111:1489–94.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Motschmann M, Muller C, Kuchenbecker J. Ophthalmodynamometry: a reliable method for measuring intracranial pressure. Strabismus. 2001;9:13–6.PubMedCrossRefGoogle Scholar
  118. 118.
    Querfurth H, Lieberman P, Arms S, Mundell S, Bennett M, van Horne C. Ophthalmodynamometry for ICP prediction and pilot test on the Mt. Everest. BMC Neurol. 2010;10:106.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Dubourg J, Javouhey E, Geeraerts T, Messerer M, Kassai B. Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta-analysis. Intensive Care Med. 2011;37:1059–68.PubMedCrossRefGoogle Scholar
  120. 120.
    Dubourg J, Messerer M, Karakitsos D, Rajajee V, Antonsen E, Javouhey E, Cammarata A, Cotton M, Daniel RT, Denaro C, Douzinas E, Dubost C, Berhouma M, Kassai B, Rabilloud M, Gullo A, Hamlat A, Kouraklis G, Mannanici G, Marill K, Merceron S, Poularas J, Ristagno G, Noble V, Shah S, Kimberly H, Cammarata G, Moretti R, Geeraerts T. Individual patient data systematic review and meta-analysis of optic nerve sheath diameter ultrasonography for detecting raised intracranial pressure: protocol of the ONSD research group. Syst Rev. 2013;2:62.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Geeraerts T, Launey Y, Martin L, Pottecher J, Vigué B, Duranteau J, Benhamou D. Ultrasonography of the optic nerve sheath may be useful for detecting raised intracranial pressure after severe brain injury. Intensive Care Med. 2007;33:1704–11.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Kimberly HH, Shah S, Marill K, Noble V. Correlation of optic nerve sheath diameter with direct measurement of intracranial pressure. Acad Emerg Med. 2008;15:201–4.PubMedCrossRefGoogle Scholar
  123. 123.
    Le A, Hoehn ME, Smith ME, Spentzas T, Schlappy D, Pershad J. Bedside sonographic measurement of optic nerve sheath diameter as a predictor of increased intracranial pressure in children. Ann Emerg. 2009;53:785–91.CrossRefGoogle Scholar
  124. 124.
    Moretti R, Pizzi B. Optic nerve ultrasound for detection of intracranial hypertension in intracranial hemorrhage patients: confirmation of previous findings in a different patient population. J Neurosurg Anesthesiol. 2009;21:16–20.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Moretti R, Pizzi B, Cassini F, Vivaldi N. Reliability of optic nerve ultrasound for the evaluation of patients with spontaneous intracranial hemorrhage. Neurocrit Care. 2009;11:406–10.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Soldatos T, Karakitsos D, Chatzimichail K, Papathanasiou M, Gouliamos A, Karabinis A. Optic nerve sonography in the diagnostic evaluation of adult brain injury. Crit Care. 2008;12:R67.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Strumwasser A, Kwan RO, Yeung L, Miraflor E, Ereso A, Castro-Moure F, Patel A, Sadjadi J, Victorino GP. Sonographic optic nerve sheath diameter as an estimate of intracranial pressure in adult trauma. J Surg Res. 2011;170:265–71.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Pinto LA, Vanderwalle E, Pronk A, Stalmans I. Intraocular pressure correlates with optic nerve sheath diameter in patients with normal tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 2012;250:1075–80.CrossRefGoogle Scholar
  129. 129.
    Jaggi GP, Miller NR, Flammer J, Weinreb RN, Remonda L, Killer HE. Optic nerve sheath diameter in normal-tension glaucoma patients. Br J Ophthalmol. 2012;96:53–6.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Jonas JB, Wang N, Wang YX, You QS, Yang D, Xu L. Ocular Hypertension: General characteristics and estimated cerebrospinal fluid pressure. The Beijing Eye Study 2011. PLoS One. 2014e;9:e100533.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Berdahl JP, Fleischman D, Zaydlarova J, Stinnett S, Allingham RR, Fautsch MP. Body mass index has a linear relationship with cerebrospinal fluid pressure. Invest Ophthalmol Vis Sci. 2012;53:1422–7.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Ren R, Wang N, Zhang X, Tian G, Jonas JB. Cerebrospinal fluid pressure correlated with body mass index. Graefes Arch Clin Exp Ophthalmol. 2012;250:445–6.PubMedCrossRefGoogle Scholar
  133. 133.
    Hayreh SS, Jonas JB. Optic disc morphology after arteritic anterior ischemic optic neuropathy. Ophthalmology. 2001;108:1586–94.PubMedCrossRefGoogle Scholar
  134. 134.
    Jonas JB, Budde WM. Diagnosis and pathogenesis of glaucomatous optic neuropathy: morphological aspects. Prog Retin Eye Res. 2000;19:1–40.PubMedCrossRefGoogle Scholar
  135. 135.
    Jonas JB, Xu L. Optic disc morphology in eyes after nonarteritic anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci. 1993;34:2260–5.PubMedGoogle Scholar
  136. 136.
    Jonas JB, Jonas SB, Jonas RA, Holbach L, Dai Y, Sun X, Panda-Jonas S. Parapapillary atrophy: Histological gamma zone and delta zone. PLoS One. 2012b;7:e47237.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Dai Y, Jonas JB, Huang H, Wang M, Sun X. Microstructure of parapapillary atrophy: Beta zone and gamma zone. Invest Ophthalmol Vis Sci. 2013;54:2013–8.PubMedCrossRefGoogle Scholar
  138. 138.
    De Moraes CG, Ketner S, Teng CC, Ehrlich JR, Raza AS, Liebmann JM, Ritch R, Hood DC. Beta-zone parapapillary atrophy and multifocal visual evoked potentials in eyes with glaucomatous optic neuropathy. Doc Ophthalmol. 2011a;123:43–50.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    De Moraes CG, Juthani VJ, Liebmann JM, Teng CC, Tello C, Susanna R Jr, Ritch R. Risk factors for visual field progression in treated glaucoma. Arch Ophthalmol. 2011b;129:562–8.PubMedCrossRefGoogle Scholar
  140. 140.
    Teng CC, De Moraes CG, Prata TS, Tello C, Ritch R, Liebmann JM. Beta-Zone parapapillary atrophy and the velocity of glaucoma progression. Ophthalmology. 2010;117:909–15.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Teng CC, De Moraes CG, Prata TS, Liebmann CA, Tello C, Ritch R, Liebmann JM. The region of largest β-zone parapapillary atrophy area predicts the location of most rapid visual field progression. Ophthalmology. 2011;118:2409–13.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Xu L, Wang Y, Yang H, Jonas JB. Differences in parapapillary atrophy between glaucomatous and normal eyes: The Beijing Eye Study. Am J Ophthalmol. 2007b;144:541–6.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Frisén L, Claesson M. Narrowing of the retinal arterioles in descending optic atrophy. A quantitative clinical study. Ophthalmology. 1984;91:1342–6.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Kawasaki R, Wang JJ, Rochtchina E, Lee AJ, Wong TY, Mitchell P. Retinal vessel caliber is associated with the 10-year incidence of glaucoma: the Blue Mountains Eye Study. Ophthalmology. 2013;120:84–90.PubMedCrossRefGoogle Scholar
  145. 145.
    Jonas JB, Schiro D. Localized retinal nerve fiber layer defects in nonglaucomatous optic nerve atrophy. (Brief Report). Graefes Arch Clin Exp Ophthalmol. 1994;232:759.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Jonas JB, Budde WM. Optic cup deepening spatially correlated with optic nerve damage in focal normal-pressure glaucoma. J Glaucoma. 1999;8:227–31.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Jonas JB, Hayreh SS. Optic disc morphology in experimental central retinal artery occlusion in rhesus monkeys. Am J Ophthalmol. 1999a;127:523–30.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Jonas JB, Hayreh SS. Localized retinal nerve fiber layer defects in chronic high-pressure experimental glaucoma in rhesus monkeys. Br J Ophthalmol. 1999b;83:1291–5.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Hayreh SS, Jonas JB. Optic disc and retinal nerve fiber layer damage following transient central retinal artery occlusion. An experimental study in rhesus monkeys. Am J Ophthalmol. 2000a;129:786–95.PubMedCrossRefGoogle Scholar
  150. 150.
    Hayreh SS, Jonas JB. Appearance of the optic disk and retinal nerve fiber layer in atherosclerosis and arterial hypertension: an experimental study in rhesus monkeys. Am J Ophthalmol. 2000b;130:91–6.PubMedCrossRefGoogle Scholar
  151. 151.
    Hayreh SS, Jonas JB, Zimmerman MB. Parapapillary chorioretinal atrophy in chronic high-pressure experimental glaucoma in rhesus monkeys. Invest Ophthalmol Vis Sci. 1998;39:2296–303.PubMedGoogle Scholar
  152. 152.
    Jonas JB, Nguyen NX, Naumann GOH. Optic disc morphometry in “simple” optic nerve atrophy. Acta Ophthalmol. 1989c;67:199–203.CrossRefGoogle Scholar
  153. 153.
    Hayreh SS. Optic disc edema in raised intracranial pressure. V Pathogenesis. Arch Ophthalmol. 1977;95:1553–65.PubMedCrossRefGoogle Scholar
  154. 154.
    Hayreh SS. Cerebrospinal fluid pressure and glaucomatous optic disc cupping. Graefes Arch Clin Exp Ophthalmol. 2009;247:721–4.PubMedCrossRefGoogle Scholar
  155. 155.
    Morgan WH, Cringle SJ, Balaratnasingam C, Yu DY. Impaired cerebrospinal fluid circulation and its relationship to glaucoma. Clin Exp Ophthalmol. 2008b;36:802–3.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Burgoyne CF, Morrison JC. The anatomy and pathophysiology of the optic nerve head in glaucoma. J Glaucoma. 2001;10(5 Suppl 1):S16–8.PubMedCrossRefGoogle Scholar
  157. 157.
    Fleischman D, Berdahl J, Stinnett SS, Fautsch MP, Allingham RR. Cerebrospinal fluid pressure (CSFP) trends in diseases associated with primary open angle glaucoma (POAG). Acta Ophthalmol. 2015;33(3):e234–6.  https://doi.org/10.1111/aos.12551. [Epub ahead of print]CrossRefGoogle Scholar
  158. 158.
    Jonas JB. Intraocular pressure during weight lifting. Arch Ophthalmol. 2008;126:287–8. Comment on Arch Ophthalmol. 2006; 124:1251-1254PubMedCrossRefGoogle Scholar
  159. 159.
    Ren R, Zhang X, Wang N, Li B, Tian G, Jonas JB. Cerebrospinal fluid pressure in ocular hypertension. Acta Ophthalmol. 2011a;89:e142–8.PubMedCrossRefGoogle Scholar
  160. 160.
    Ren R, Wang N, Zhang X, Cui T, Jonas JB. Trans-lamina cribrosa pressure difference correlated with neuroretinal rim area in glaucoma. Graefes Arch Clin Exp Ophthalmol. 2011b;249:1057–63.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Shin DH. Influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient. Invest Ophthalmol Vis Sci. 1995;36:2163–4.PubMedGoogle Scholar
  162. 162.
    Wostyn P, Audenaert K, De Deyn PP. High occurrence rate of glaucoma among patients with normal pressure hydrocephalus. J Glaucoma. 2010;19:225–6.PubMedCrossRefGoogle Scholar
  163. 163.
    Wostyn P, De Groot V, Van Dam D, Audenaert K, De Deyn PP. Senescent changes in cerebrospinal fluid circulatory physiology and their role in the pathogenesis of normal-tension glaucoma. Am J Ophthalmol. 2013;156:5–14.e2.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Wostyn P, De Groot V, Van Dam D, Audenaert K, De Deyn PP. The role of low intracranial pressure in the development of glaucoma in patients with Alzheimer’s disease. Prog Retin Eye Res. 2014;39:107–8.PubMedCrossRefGoogle Scholar
  165. 165.
    Wostyn P, De Groot V, Van Dam D, Audenaert K, De Deyn PP. Intracranial pressure fluctuations: a potential risk factor for glaucoma? Acta Ophthalmol. 2015;93(1):e83–4. [Epub ahead of print]PubMedCrossRefGoogle Scholar
  166. 166.
    Gilland O. Normal cerebrospinal-fluid pressure. N Engl J Med. 1969;280:904–5.PubMedGoogle Scholar
  167. 167.
    Greenfield DS, Wanichwecharungruang B, Liebmann JM, Ritch R. Pseudotumor cerebri appearing with unilateral papilledema after trabeculectomy. Arch Ophthalmol. 1997;115:423–6.PubMedCrossRefGoogle Scholar
  168. 168.
    Yang H, Downs JC, Bellezza A, Thompson H, Burgoyne CF. 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: prelaminar neural tissues and cupping. Invest Ophthalmol Vis Sci. 2007;48:5068–84.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Berdahl JP, Allingham RR, Johnson DH. Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology. 2008a;115:763–8.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Berdahl JP, Fautsch MP, Stinnett SS, Allingham RR. Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. Invest Ophthalmol Vis Sci. 2008b;49:5412–8.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Jonas JB, Nangia V, Wang N, Bhate K, Nangia P, Nangia P, Yang D, Xie X, Panda-Jonas S. Trans-lamina cribrosa pressure difference and open-angle glaucoma: The Central India Eye and Medical Study. PLoS One. 2013;8:e82284.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Jonas JB, Wang N, Wang S, Wang YX, You QS, Yang D, Wei WB, Xu L. Retinal vessel diameter and estimated cerebrospinal fluid pressure in arterial hypertension. The Beijing Eye Study. Am J Hypertens. 2014c;27:1170–8.PubMedCrossRefGoogle Scholar
  173. 173.
    Jonas JB, Wang N, Xu J, Wang YX, You QS, Yang D, Xie XB, Xu L. Diabetic retinopathy and estimated cerebrospinal fluid pressure. The Beijing Eye Study 2011. PLoS One. 2014d;9:e96273.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Jonas JB, Wang N, Wang YX, You QS, Xie XB, Yang D, Xu L. Estimated trans-lamina cribrosa pressure difference versus intraocular pressure as biomarker for open-angle glaucoma: The Beijing Eye Study 2011. Acta Ophthalmol. 2014f;  https://doi.org/10.1111/aos.12480. [Epub ahead of print]
  175. 175.
    Jonas JB, Nangia V, Gupta R, Agarwal S, Matin A, Khare A, Bhate K, Sinha A, Bhojwani K, Kulkarni M, Panda-Jonas S. Retinal nerve fibre layer cross-sectional area, neuroretinal rim area and body mass index. Acta Ophthalmol. 2014g;92:e194–9.PubMedCrossRefGoogle Scholar
  176. 176.
    Xu L, Wang YX, Wang S, Jonas JB. Neuroretinal rim area and body mass index. PLoS One. 2012;7:e30104.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Qu Y, Wang YX, Xu L, Zhang L, Zhang J, Zhang J, Wang L, Yang L, Yang A, Wang J, Jonas JB. Glaucoma-like optic neuropathy in patients with intracranial tumors. Acta Ophthalmol. 2011;89:E428–33.PubMedCrossRefGoogle Scholar
  178. 178.
    Wang YX, Xu L, Lu W, Liu FJ, Qu YZ, Wang J, Jonas JB. Parapapillary atrophy in patients with intracranial tumors. Acta Ophthalmol. 2013;91:521–5.PubMedCrossRefGoogle Scholar
  179. 179.
    Flammer J, Orgül S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, Renard JP, Stefánsson E. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21:359–93.PubMedCrossRefGoogle Scholar
  180. 180.
    Iwase A, Suzuki Y, Araie M, Yamamoto T, Abe H, Shirato S, Kuwayama Y, Mishima HK, Shimizu H, Tomita G, Inoue Y, Kitazawa Y, Tajimi Study Group, Japan Glaucoma Society. The prevalence of primary open-angle glaucoma in Japanese: the Tajimi Study. Ophthalmology. 2004;111:1641–8.PubMedGoogle Scholar
  181. 181.
    Shiose Y, Kitazawa Y, Tsukahara S, Akamatsu T, Mizokami K, Futa R, Katsushima H, Kosaki H. Epidemiology of glaucoma in Japan--a nationwide glaucoma survey. Jpn J Ophthalmol. 1991;35:133–55.PubMedGoogle Scholar
  182. 182.
    Li J, Fang L, Killer HE, Flammer J, Meyer P, Neutzner A. Meningothelial cells as part of the central nervous system host defence. Biol Cell. 2013a;105:304–15.PubMedCrossRefGoogle Scholar
  183. 183.
    Li Z, Yang DY, Lu Y, Liu DC, Jia JP, Jonas JB, Wang NL. Intracranial hypotension and co-existent normal-pressure glaucoma: the Beijing intracranial and intraocular pressure study. Chin Med J. 2013b;126:1588–9.PubMedGoogle Scholar
  184. 184.
    Killer HE. Production and circulation of cerebrospinal fluid with respect to the subarachnoid space of the optic nerve. J Glaucoma. 2013a;22(Suppl 5):S8–10.PubMedCrossRefGoogle Scholar
  185. 185.
    Jaggi GP, Mironov A, Huber AR, Killer HE. Optic nerve compartment syndrome in a patient with optic nerve sheath meningioma. Eur J Ophthalmol. 2007;17:454–8.PubMedCrossRefGoogle Scholar
  186. 186.
    Killer HE. Compartment syndromes of the optic nerve and open-angle glaucoma. J Glaucoma. 2013b;22(Suppl 5):S19–20.PubMedCrossRefGoogle Scholar
  187. 187.
    Killer HE, Jaggi GP, Miller NR, Huber AR, Landolt H, Mironov A, Meyer P, Remonda L. Cerebrospinal fluid dynamics between the basal cisterns and the subarachnoid space of the optic nerve in patients with papilloedema. Br J Ophthalmol. 2011;95:822–7.PubMedCrossRefGoogle Scholar
  188. 188.
    Killer HE, Laeng HR, Groscurth P. Lymphatic capillaries in the meninges of the human optic nerve. J Neuroophthalmol. 1999;19:222–8.PubMedGoogle Scholar
  189. 189.
    Killer HE, Jaggi G, Miller NR, Flammer J, Meyer P. Does immunohistochemistry allow easy detection of lymphatics in the optic nerve sheath? J Histochem Cytochem. 2008a;56:1087–92.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Xin X, Fan B, Flammer J, Miller NR, Jaggi GP, Killer HE, Meyer P, Neutzner A. Meningothelial cells react to elevated pressure and oxidative stress. PLoS One. 2011;6:e20142.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Jaggi GP, Harlev M, Ziegler U, Dotan S, Miller NR, Killer HE. Cerebrospinal fluid segregation optic neuropathy: an experimental model and a hypothesis. Br J Ophthalmol. 2010;94:1088–93.PubMedCrossRefGoogle Scholar
  192. 192.
    Killer HE, Jaggi GP, Flammer J, Miller NR, Huber AR. The optic nerve: a new window into cerebrospinal fluid composition? Brain. 2006;129:1027–30.PubMedCrossRefGoogle Scholar
  193. 193.
    Killer HE, Jaggi GP, Flammer J, Miller NR, Huber AR, Mironov A. Cerebrospinal fluid dynamics between the intracranial and the subarachnoid space of the optic nerve. Is it always bidirectional? Brain. 2007;130:514–20.PubMedCrossRefGoogle Scholar
  194. 194.
    Killer HE, Jaggi GP, Flammer J, Miller NR. Is open-angle glaucoma caused by impaired cerebrospinal fluid circulation: around the optic nerve? Clin Exp Ophthalmol. 2008b;36:308–11.PubMedCrossRefGoogle Scholar
  195. 195.
    Killer HE, Miller NR, Flammer J, Meyer P, Weinreb RN, Remonda L, Jaggi GP. Cerebrospinal fluid exchange in the optic nerve in normal-tension glaucoma. Br J Ophthalmol. 2012;96:544–8.PubMedCrossRefGoogle Scholar
  196. 196.
    Hedges TR, Zaren HA. The relationship of optic nerve tissue pressure to intracranial and systemic arterial pressure. Am J Ophthalmol. 1973;75:90–8.PubMedCrossRefGoogle Scholar
  197. 197.
    Rios-Montenegro EN, Anderson DR, Noble JD. Intracranial pressure and ocular hemodynamics. Arch Ophthalmol. 1973;89:52–8.PubMedCrossRefGoogle Scholar
  198. 198.
    Yang D, Fu J, Hou R, Liu K, Jonas JB, Wang H, Chen WW, Li Z, Sang J, Zhang Z, Liu S, Cao Y, Xie X, Ren R, Lu Q, Weinreb RN, Wang N. Optic neuropathy induced by experimentally reduced cerebrospinal fluid pressure in monkeys. Invest Ophthalmol Vis Sci. 2014;55:3067–73.PubMedCrossRefGoogle Scholar
  199. 199.
    Jonas JB, Wang N, Wang YX, You QS, Yang D, Xie XB, Xu L. Incident retinal vein occlusions and estimated cerebrospinal fluid pressure. The Beijing Eye Study. Acta Ophthalmol. 2015b;93(7):e522–6.PubMedCrossRefGoogle Scholar
  200. 200.
    Gupta A, Raman R, Mohana K, Kulothungan V, Sharma T. Communications between intraretinal and subretinal space on optical coherence tomography of neurosensory retinal detachment in diabetic macular edema. Oman J Ophthalmol. 2013;6:183–8.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Gupta A, Raman R, Kulothungan V, Sharma T. Association of systemic and ocular risk factors with neurosensory retinal detachment in diabetic macular edema: a case-control study. BMC Ophthalmol. 2014a;14:47.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Gupta P, Sidhartha E, Girard MJ, Mari JM, Wong TY, Cheng CY. A simplified method to measure choroidal thickness using adaptive compensation in enhanced depth imaging optical coherence tomography. PLoS One. 2014b;9:e96661.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Paques M, Massin P, Sahel JA, Gaudric A, Bergmann JF, Azancot S, Lévy BI, Vicaut E. Circadian fluctuations of macular edema in patients with morning vision blurring: correlation with arterial pressure and effect of light deprivation. Invest Ophthalmol Vis Sci. 2005;46:4707–11.PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    Tan CS, Ouyang Y, Ruiz H, Sadda SR. Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53:261–6.PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Toyokawa N, Kimura H, Fukomoto A, Kuroda S. Difference in morning and evening choroidal thickness in Japanese subjects with no chorioretinal disease. Ophthalmic Surg Lasers Imaging. 2012;43:109–14.PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Klein R, Klein BE, Moss SE, Wong TY, Hubbard L, Cruickshanks KJ, Palta M. The relation of retinal vessel caliber to the incidence and progression of diabetic retinopathy: XIX: the Wisconsin Epidemiologic Study of Diabetic Retinopathy. Arch Ophthalmol. 2004;122:76–83.PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Klein R, Klein BE, Moss SE, Wong TY, Sharrett AR. Retinal vascular caliber in persons with type 2 diabetes: the Wisconsin Epidemiological Study of Diabetic Retinopathy: XX. Ophthalmology. 2006;113:1488–98.PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Klein R, Klein BE, Moss SE, Wong TY. Retinal vessel caliber and microvascular and macrovascular disease in type 2 diabetes: XXI: the Wisconsin Epidemiologic Study of Diabetic Retinopathy. Ophthalmology. 2007;114:1884–92.PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Stodtmeister R. The pulsation and the pressure of the central retinal vein and their relation to glaucoma damage and therapy. Klin Monatsbl Augenheilkd. 2008;225:632–6.PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Cox SN, Hay E, Bird AC. Treatment of chronic macular edema with acetazolamide. Arch Ophthalmol. 1988;106:1190–5.PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Rosenbloom AL. Intracerebral crises during treatment of diabetic ketoacidosis. Diabetes Care. 1990;13:22–33.PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Srinivasan S, Benneyworth B, Garton HJ, Hervey-Jumper SL, Raimer PL, Odetola FO, Han YY. Intracranial pressure/cerebral perfusion pressure-targeted management of life-threatening intracranial hypertension complicating diabetic ketoacidosis-associated cerebral edema: a case report. Pediatr Emerg Care. 2012;28:696–8.PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    Van der Meulen JA, Klip A, Grinstein S. Possible mechanism for cerebral oedema in diabetic ketoacidosis. Lancet. 1987;2(8554):306–8.PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Wood EG, Go-Wingkun J, Luisiri A, Aceto T Jr. Symptomatic cerebral swelling complicating diabetic ketoacidosis documented by intraventricular pressure monitoring: survival without neurologic sequela. Pediatr Emerg Care. 1990;6:285–8.PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Jonas JB, Wang N, Yang D, Ritch R, Panda-Jonas S. Facts and myths of cerebrospinal fluid pressure for the physiology of the eye. Prog Retin Eye Res. 2015;46:67–83.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of OphthalmologyMedical Faculty Mannheim of the Ruprecht-Karls-University, Seegartenklinik HeidelbergHeidelbergGermany
  2. 2.Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren HospitalCapital Medical UniversityBeijingChina
  3. 3.Beijing Ophthalmology & Visual Sciences Key LaboratoryBeijingChina

Personalised recommendations