Advertisement

Pressure and Velocity: An Inseparable Couple

  • H. E. KillerEmail author
Chapter
Part of the Advances in Visual Science and Eye Diseases book series (AVSED, volume 1)

Abstract

Pressure is probably the most frequent association with glaucoma. The effect of pressure—intraocular pressure (IOP)—however became under question when larger studies in patients with glaucomatous disc excavation and glaucomatous visual defects demonstrated that this clinical manifestations can also be present in patients with “normal” IOP. This is true for at least 30% of patients with primary open-angle glaucoma in the western hemisphere and for up to 90% of open-angle glaucoma patients in the Far East [1, 2]. Such observations stimulated the research for alternative mechanisms that could help to explain glaucomatous damage to the optic nerve. One direction of research focused on vascular dysregulation [3]. The current research topics are the concept of the translaminar pressure gradient defined as intraocular pressure (IOP)—intracranial pressure (ICP) [4–7]. The intraorbital optic nerve is located within the subarachnoid space (SAS) of the optic nerve (ON) and therefore completely surrounded with cerebrospinal fluid (CSF). The SAS itself is confined by the meninges (dura, arachnoid on one side, and the pia mater on the other side) (Fig. 11.1).

References

  1. 1.
    Iwase A, Suzuki Y, Araie M. The prevalence of primary open-angle glaucoma in Japanese: The Tajimi study. Ophthalmology. 2004;111:1641–8.PubMedGoogle Scholar
  2. 2.
    Mi XS, Yuan TF, So KF. The current research status of normal tension glaucoma. Clin Interv Aging. 2014;9:1563–71.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Flammer J, Orgul S, Costa VP. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21(4):359–93.CrossRefGoogle Scholar
  4. 4.
    Morgan WH, Yu DY, Cooper RL. The influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient. Invest Ophthalmol Vis Sci. 1995;36:1163–72.PubMedGoogle Scholar
  5. 5.
    Jonas JB, Berenshtein E, Holbach L. Anatomic relationship between lamina cribrosa, intraocular space, and cerebrospinal fluid space. Invest Ophthalmol Vis Sci. 2003;44:5189–95.CrossRefGoogle Scholar
  6. 6.
    Jonas JB, Wang N, Yang D. Facts and myths of cerebrospinal fluid pressure for the physiology of the eye. Prog Retin Eye Res. 2015;46:67–83.CrossRefGoogle Scholar
  7. 7.
    Jonas JB, Wang N, Yang D. Translamina cribrosa pressure difference as potential element in the pathogenesis of glaucomatous optic neuropathy. Asia Pac J Ophthalmol. 2016;5:5–10.CrossRefGoogle Scholar
  8. 8.
    Watanabe A, Kinouchi H, Horikoshi T. Effect of intracranial pressure on the diameter of the optic nerve sheath. J Neurosurg. 2008;109:255–8.CrossRefGoogle Scholar
  9. 9.
    Siaudvytyte L, Januleviciene I, Ragauskas A, Bartusis L, Meiliuniene I, Siesky B, Harris A. The difference in translaminar pressure gradient and neuroretinal rim area in glaucoma and healthy subjects. J Ophthalmol. 2014, 2014:5. Article ID 937360Google Scholar
  10. 10.
    Killer HE, Hubert R, Laeng RH, Flammer J, Groscurth P. The arachnoid trabeculae and septae in the subarachnoid space of the human optic nerve: anatomy and clinical considerations. Br J Ophthalmol. 2003;87:777–81.CrossRefGoogle Scholar
  11. 11.
    Killer HE, et al. The optic nerve: a new window into cerebrospinal fluid composition. Brain. 2006;129:1027–30.CrossRefGoogle Scholar
  12. 12.
    Serot JM, Zmudka J, Jouanny P. A possible role for CSF turnover and choroid plexus in the pathogenesis of late onset Alzheimer’s disease. J Alzheimers Dis. 2012;30:17–26.CrossRefGoogle Scholar
  13. 13.
    Silverberg GD, Mayo M, Saul T. Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol. 2003;2:506–11.CrossRefGoogle Scholar
  14. 14.
    Wostyn P, De Groot V, Van Dam D. The glymphatic system: a new player in ocular diseases? Invest Ophthalmol Vis Sci. 2016;57:5426–7.CrossRefGoogle Scholar
  15. 15.
    Maesaka JK, Sodam B, Palaia T, Ragolia L. Prostaglandin D2 synthase: apoptotic factor in Alzheimer plasma, inducer of reactive oxygen species, inflammatory cytokines and dialysis dementia. J Nephropathol. 2013;2:166–80.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Killer HE, Laeng RH, Groscurth P. Lymphatic capillaries in the meninges of the human optic nerve. J Neuroophthalmol. 1999;19:222–8.PubMedGoogle Scholar
  17. 17.
    Fan B, Bordigari G, Flammer J. Meningothelial cells participate in immunological processes in the cerebrospinal fluid. J Neuroimmunol. 2012;244:45–50.CrossRefGoogle Scholar
  18. 18.
    Wang N, Xie X, Yang D. Evaluation of optic nerve and optic nerve sheath diameter in primary open angle glaucoma with 3-tesla magnetic resonance imaging. Invest Ophthalmol Vis Sci. 2011;52:3963.Google Scholar
  19. 19.
    Jaggi GP, Miller NR, Flammer J, Weinreb R. Optic nerve sheath diameter in normal –tension glaucoma patients. J Ophthalmol. 2012;96:53–6.Google Scholar
  20. 20.
    Pircher A, Montali M, Berberat J. The optic canal: a bottleneck for cerebrospinal fluid dynamics in normal-tension glaucoma? Front Neurol. 2017;8:47.CrossRefGoogle Scholar
  21. 21.
    Wostyn P, De Groot V, Van Dam D. The two faces of the translaminar pressure difference: the biomechanical one and the biochemical one. Clin Exp Optom. 2017;100:102–3.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Ophthalmology Kantonsspital AarauUniversity of BaselBaselSwitzerland

Personalised recommendations