Advertisement

Photocatalysis pp 223-240 | Cite as

Hollow or Yolk–Shell-Type Photocatalyst

  • Jinlong Zhang
  • Baozhu Tian
  • Lingzhi Wang
  • Mingyang Xing
  • Juying Lei
Chapter
Part of the Lecture Notes in Chemistry book series (LNC, volume 100)

Abstract

The emerging hollow and yolk–shell-type photocatalyst composites show attractive photocatalytic performance by multifunction assembly, accelerating the separation of photocatalytic induced hole–electron and enhancing the light absorption efficiency. Meanwhile, more active sites can be formed due to the exposed inner surface of the shell. This chapter focuses on providing a state-of-the-art introduction about the synthesis routes and photocatalytic application of this kind of composites.

Keywords

Hollow Yolk–shell Multifunction Hole–electron separation Light scattering 

References

  1. 1.
    Yin YD, Rioux RM, Erdonmez CK et al (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304:711–714CrossRefGoogle Scholar
  2. 2.
    Yang HG, Zeng HC (2004) Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J Phys Chem B 108:3492–3495CrossRefGoogle Scholar
  3. 3.
    Wang X, Feng J, Bai Y et al (2016) Synthesis, properties, and applications of hollow micro-/nanostructures. Chem Rev 116:10983–11060CrossRefGoogle Scholar
  4. 4.
    Li J, Zeng HC (2005) Size tuning, functionalization, and reactivation of Au in TiO2 nanoreactors. Angew Chem Int Ed 44:4342–4345CrossRefGoogle Scholar
  5. 5.
    Wang PH, Yang LG, Wang LZ et al (2016) Template-free synthesis of hollow anatase TiO2 microspheres through stepwise water-releasing strategy. Mater Lett 164:405–408CrossRefGoogle Scholar
  6. 6.
    Li H, Bian Z, Zhu J et al (2007) Mesoporous Titania spheres with tunable Chamber structure and enhanced photocatalytic activity. J Am Chem Soc 129:8406–8407CrossRefGoogle Scholar
  7. 7.
    Yu JG, Su YR, Cheng B (2007) Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous Titania. Adv Funct Mater 17:1984–1990CrossRefGoogle Scholar
  8. 8.
    Joo JB, Lee I, Dahl M et al (2013) Controllable synthesis of mesoporous TiO2 hollow shells: toward an efficient photocatalyst. Adv Funct Mater 23:4246–4254CrossRefGoogle Scholar
  9. 9.
    Lu LJ, Teng F, Sen T et al (2015) Synthesis of visible-light driven CrxOy–TiO2 binary photocatalyst based on hierarchical macro–mesoporous silica. Appl Cata B Environ 163:9–15CrossRefGoogle Scholar
  10. 10.
    Zhang RY, Shen DK, Xu M et al (2014) Ordered macro-/mesoporous anatase films with high thermal stability and crystallinity for photoelectrocatalytic water-splitting. Adv Energy Mater 4:1301725CrossRefGoogle Scholar
  11. 11.
    Li J, Zeng HC (2007) Hollowing Sn-Doped TiO2 nanospheres via Ostwald Ripening. J Am Chem Soc 129:15839–15847CrossRefGoogle Scholar
  12. 12.
    Li W, Deng Y, Wu ZX et al (2011) Hydrothermal etching assisted crystallization: a facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. J Am Chem Soc 133:15830–15833CrossRefGoogle Scholar
  13. 13.
    Li A, Chang X, Huang Z et al (2016) Thin heterojunctions and spatially separated cocatalysts to simultaneously reduce bulk and surface recombination in photocatalysts. Angew Chem Int Ed 55:13734–13738CrossRefGoogle Scholar
  14. 14.
    Qiu B, Zhu Q, Du M et al (2017) Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-scheme photocatalytic water splitting. Angew Chem Int Ed 129:2728–2732CrossRefGoogle Scholar
  15. 15.
    Xing M, Qiu B, Du M et al (2017) Spatially separated CdS shells exposed with reduction surfaces for enhancing photocatalytic hydrogen evolution. Adv Funct Mater 27:1702624CrossRefGoogle Scholar
  16. 16.
    Qian J, Liu P, Xiao Y et al (2009) TiO2-Coated multilayered SnO2 hollow microspheres for dye-sensitized solar cells. Adv Mater 21:3663–3667CrossRefGoogle Scholar
  17. 17.
    Chen X, Ye J, Ouyang S et al (2011) Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. ACS Nano 5:4310–4318CrossRefGoogle Scholar
  18. 18.
    Qi DY, Lu LJ, Xi ZH et al (2014) Enhanced photocatalytic performance of TiO2 based on synergistic effect of Ti3+ self-doping and slow light effect. Appl Catal B Environ 160–161:621–628CrossRefGoogle Scholar
  19. 19.
    Dinh CT, Yen H, Kleitz F et al (2014) Three-dimensional ordered assembly of thin-shell Au/TiO2 hollow nanospheres for enhanced visible-light-driven photocatalysis. Angew Chem Int Ed 53:6618–6623CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jinlong Zhang
    • 1
  • Baozhu Tian
    • 1
  • Lingzhi Wang
    • 1
  • Mingyang Xing
    • 1
  • Juying Lei
    • 1
  1. 1.Key Laboratory for Advanced Materials & Institute of Fine ChemicalsEast China University of Science & TechnologyShanghaiChina

Personalised recommendations