Photocatalysis pp 197-221 | Cite as

Modifications of Photocatalysts by Doping Methods

  • Jinlong Zhang
  • Baozhu Tian
  • Lingzhi Wang
  • Mingyang Xing
  • Juying Lei
Part of the Lecture Notes in Chemistry book series (LNC, volume 100)


This chapter presents a review of novel achievements in the doping modification of TiO2 photocatalytic systems aimed at enhancing TiO2 applications in the areas of energy conversion and environmental cleanup. Herein we studied the synthesis, physical properties, as well as synergism of modified TiO2. Based on the studies reported in the literature, metal and nonmetal doping- and co-doping-modified TiO2 are very effective systems to extend the activating spectra to the visible range. Therefore, doping-modified TiO2 play an important role in the development of efficient photocatalysts for future perspectives.


Titanium dioxide (TiO2Photocatalysis Ti3+ doped Co-doping 


  1. 1.
    O'Regan B, Gratzel M (1991) A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  2. 2.
    Ito S, Chen P, Comte P et al (2007) Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Prog Photovolt Res Appl 15(7):603–612CrossRefGoogle Scholar
  3. 3.
    Ito S, Zakeeruddin SM, Humphry-Baker R et al (2006) High-efficiency organic-dye-sensitized solar cells controlled by Nanocrystalline-TiO2 electrode thickness. Adv Mater 18(9):1202–1205CrossRefGoogle Scholar
  4. 4.
    Kuang D, Brillet J, Chen P et al (2008) Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano 2(6):1113–1116PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Nazeeruddin MK, Humphry-Baker R, Liska P et al (2003) Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J Phys Chem B 107(34):8981–8987CrossRefGoogle Scholar
  6. 6.
    Nazeeruddin MK, Pechy P, Renouard T et al (2001) Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123(8):1613–1624PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Wang P, Zakeeruddin SM, Comte P et al (2003) Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals. J Phys Chem B 107(51):4336–14341Google Scholar
  8. 8.
    Zukalova M, Zukal A, Kavan L et al (2005) Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. Nano Lett 5(9):1789–1792PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Bach U, Lupo D, Comte P et al (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395(6702):583–585CrossRefGoogle Scholar
  10. 10.
    Zhu JF, Chen F, Zhang J et al (2006) Fe3+-TiO2 photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization. J Photochem Photobiol A Chem 180(1):196–204CrossRefGoogle Scholar
  11. 11.
    Yang Y, Tian CX (2012) Effects of calcining temperature on photocatalytic activity of Fe-doped sulfated Titania. Photochem Photobiol 88(4):816–823PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Shi JW, Zheng JT, Hu Y et al (2007) Influence of Fe3+ and Ho3+ co-doping on the photocatalytic activity of TiO2. Meter Chem Phys 106(2):247–249CrossRefGoogle Scholar
  13. 13.
    Zhu J, Zheng W, He B et al (2004) Characterization of Fe-TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J Mol Catal A Chem 216(1):35–43CrossRefGoogle Scholar
  14. 14.
    Tong T, Zhang J, Tian B et al (2008) Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. J Hazard Mater 155(3):572–579PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Zhu JF, Deng ZG, Chen F et al (2006) Hydrothermal doping method for preparation of Cr3+- TiO2 photocatalysts with concentration gradient distribution of Cr3+. Appl Catal B Environ 62(3):329–335CrossRefGoogle Scholar
  16. 16.
    Anpo M, Takeuchi MJ (2003) The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J Catal 216(1):505–516CrossRefGoogle Scholar
  17. 17.
    Hamzah N, Nordin NM, Nadzri AHA et al (2012) Enhanced activity of Ru/TiO2 catalyst using bisupport bentonite-TiO2 for hydrogenolysis of glycerol in aqueous media. Appl Catal A: General 419:133–141CrossRefGoogle Scholar
  18. 18.
    Panagiotopoulou P, Kondarides DI, Verykios XEJ (2010) Mechanistic study of the selective methanation of CO OVER ru/TiO2 catalyst: identification of active surface species and reaction pathways. J Phys Chem C 115(4):1220–1230CrossRefGoogle Scholar
  19. 19.
    Yuan S, Chen Y, Shi LY et al (2007) Synthesis and characterization of Ce-doped mesoporous anatase with long-range ordered mesostructure. Mater Lett 61(21):4283–4286CrossRefGoogle Scholar
  20. 20.
    Tong TZ, Zhang JL, Tian BZ et al (2007) Preparation of Ce-TiO2 catalysts by controlled hydrolysis of titanium alkoxide based on esterification reaction and study on its photocatalytic activity. J Colloid Interface Sci 315:382–388PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Xing MY, Qi DY, Zhang JL et al (2011) One-step hydrothermal method to prepare carbon and lanthanum co-doped TiO2 nanocrystals with exposed {001} facets and their high UV and visible-light photocatalytic activity. Chem Eur J 17(41):11432–11436PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Yuan S, Sheng QR, Zhang JL et al (2005) Synthesis of La3+ doped mesoporous titania with highly crystallized walls. Microporous Mesoporous Mater 79(1):93–99CrossRefGoogle Scholar
  23. 23.
    Gao HT, Liu WC, Lu B et al (2012) Photocatalytic activity of La, Y co-doped TiO2 nanoparticles synthesized by ultrasonic assisted sol–gel method. J Nanosci Nanotechnol 12(5):3959–3965PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Tian B, Li C, Gu F et al (2009) Flame sprayed V-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light irradiation. Chem Eng J 151(1):220–227CrossRefGoogle Scholar
  25. 25.
    Liu H, Wu Y, Zhang J (2011) A new approach toward carbon-modified vanadium-doped titanium dioxide photocatalysts. ACS Appl Mater Interfaces 3(5):1757–1764PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Lin WC, Lin YJ (2012) Effect of vanadium (IV)-doping on the visible light-induced catalytic activity of titanium dioxide catalysts for methylene blue degradation. Environ Eng Sci 29(6):447–452PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Sajjad S, Leghari SAK, Chen F et al (2010) Bismuth-doped ordered mesoporous TiO2: visible-light catalyst for simultaneous degradation of phenol and chromium. Chem Eur J 16:13795–13804PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Wang WJ, Zhang JL, Chen F et al (2010) Catalysis of redox reactions by Ag@ TiO2 and Fe3+-doped Ag@ TiO2 core–shell type nanoparticles. Res Chem Intermed 36(2):163–172CrossRefGoogle Scholar
  29. 29.
    Yuan XL, Zhang JL, Anpo M et al (2010) Synthesis of Fe3+- doped ordered mesoporous TiO2 with enhanced visible light photocatalytic activity and highly crystallized anatase wall. Res Chem Intermed 36(1):83–93CrossRefGoogle Scholar
  30. 30.
    Cong Y, Tian BZ, Zhang JL (2011) Improving the thermal stability and photocatalytic activity of nanosized titanium dioxide via La3+ and N co-doping. Appl Catal B Environ 101(3):376–381CrossRefGoogle Scholar
  31. 31.
    Zhang J, Wu Y, Xing M et al (2010) Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ Sci 3(6):715–726CrossRefGoogle Scholar
  32. 32.
    Zuo F, Wang L, Wu T et al (2010) Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J Am Chem Soc 132(34):11856–11857PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Xing M, Fang W, Nasir M et al (2013) Self-doped Ti3+-enhanced TiO2 nanoparticles with a high-performance photocatalysis. J Catal 297:236–243CrossRefGoogle Scholar
  34. 34.
    Zheng Z, Huang B, Meng X et al (2013) Metallic zinc-assisted synthesis of Ti3+ self-doped TiO2 with tunable phase composition and visible-light photocatalytic activity. Chem Commun 49(9):868–870CrossRefGoogle Scholar
  35. 35.
    Hoang S, Berglund SP, Hahn NT et al (2012) Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. J Am Chem Soc 134(8):3659–3662PubMedCrossRefGoogle Scholar
  36. 36.
    Xing M, Zhang J, Chen F et al (2011) An economic method to prepare vacuum activated photocatalysts with high photo-activities and photosensitivities. Chem Commun 47(17):4947–4949CrossRefGoogle Scholar
  37. 37.
    Liu GL, Han C, Pelaez M, Zhu DW, Liao SJ, Likodimos V, Ioannidis N, Kontos AG, Falaras P, Dunlop PSM, Byrne JA, Dionysiou DD (2012) Synthesis, characterization and photocatalytic evaluation of visible light activated C-doped TiO2 nanoparticles. Nanotechnology 23(29):294003PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Selvam K, Swaminathan M (2012) Nano N-TiO2 mediated selective photocatalytic synthesis of quinaldines from nitrobenzenes. RSC Adv 2(7):2848–2855CrossRefGoogle Scholar
  39. 39.
    Zhang W, Yang B, Chen J (2012) Effects of calcination temperature on preparation of boron-doped TiO2 by sol-gel method. Int J Photoenergy 2012:1Google Scholar
  40. 40.
    Asahi R, Morikawa T, Ohwaki T et al (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271CrossRefGoogle Scholar
  41. 41.
    Cong Y, Zhang JL, Chen F et al (2007) Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J Phys Chem C 111(19):6976–6982CrossRefGoogle Scholar
  42. 42.
    Xing M, Zhang J, Chen F et al (2009) New approaches to prepare nitrogen-doped TiO2 photocatalysts and study on their photocatalytic activities in visible light. Appl Catal B Environ 89(3):563–569CrossRefGoogle Scholar
  43. 43.
    Lu XN, Tian BZ, Chen F et al (2010) Preparation of boron-doped TiO2 films by autoclaved-sol method at low temperature and study on their photocatalytic activity. Thin Solid Films 519(1):111–116CrossRefGoogle Scholar
  44. 44.
    Wu YM, Xing MY, Zhang JL et al (2010) Effective visible light-active boron and carbon modified TiO2 photocatalyst for degradation of organic pollutant. Appl Catal B Environ 97(1):182–189CrossRefGoogle Scholar
  45. 45.
    Tang YB, Yin LC, Yang Y et al (2012) Tunable band gaps and p-type transport properties of boron-doped graphenes by controllable ion doping using reactive microwave plasma. ACS Nano 6(3):1970–1978PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Wang XD, Blackford M, Prince K et al (2012) Preparation of boron-doped porous titania networks containing gold nanoparticles with enhanced visible-light photocatalytic activity. ACS Appl Mater Interfaces 4(1):476–482PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Wu YM, Zhang JL, Xiao L et al (2010) Properties of carbon and iron modified TiO2 photocatalyst synthesized at low temperature and photodegradation of acid orange 7 under visible light. Appl Surf Sci 256(13):4260–4268CrossRefGoogle Scholar
  48. 48.
    Parayil SK, Kibombo HS, Wu CM et al (2012) Enhanced photocatalytic water splitting activity of carbon-modified TiO2 composite materials synthesized by a green synthetic approach. Int J Hydrog Energy 37(10):8257–8267CrossRefGoogle Scholar
  49. 49.
    Zhong J, Chen F, Zhang JL (2009) Carbon-deposited TiO2: synthesis, characterization, and visible photocatalytic performance. J Phys Chem C 114(2):933–939CrossRefGoogle Scholar
  50. 50.
    Xing MY, Qi DY, Zhang JL et al (2012) Super-hydrophobic fluorination mesoporous MCF/TiO2 composite as a high-performance photocatalyst. J Catal 294:37–46CrossRefGoogle Scholar
  51. 51.
    Tosoni S, Fernandez Hevia D, González Díaz Ó et al (2012) Origin of optical excitations in fluorine-doped titania from response function theory: relevance to photocatalysis. J Phys Chem Lett 3(16):2269–2274PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Liu SW, Yu JG, Cheng B et al (2012) Fluorinated semiconductor photocatalysts: tunable synthesis and unique properties. Adv Colloid Interf Sci 173:35–53CrossRefGoogle Scholar
  53. 53.
    Seo H, Baker LR, Hervier A et al (2010) Generation of highly n-type titanium oxide using plasma fluorine insertion. Nano Lett 11(2):751–756PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Kuwahara Y, Maki K, Matsumura Y et al (2009) Hydrophobic modification of a mesoporous silica surface using a fluorine-containing silylation agent and its application as an advantageous host material for the TiO2 photocatalyst. J Phys Chem C 113(4):1552–1559CrossRefGoogle Scholar
  55. 55.
    Xu P, Xu T, Lu J et al (2010) Visible-light-driven photocatalytic S-and C-codoped meso/nanoporous TiO2. Energy Environ Sci 3(8):1128–1134CrossRefGoogle Scholar
  56. 56.
    Niu Y, Xing M, Tian B et al (2012) Improving the visible light photocatalytic activity of nano-sized titanium dioxide via the synergistic effects between sulfur doping and sulfation. Appl Catal B Environ 115–116:253–260CrossRefGoogle Scholar
  57. 57.
    Bidaye P, Khushalani D, Fernandes JB (2010) A simple method for synthesis of S-doped TiO2 of high photocatalytic activity. Catal Lett 134(1–2):169–174CrossRefGoogle Scholar
  58. 58.
    Dozzi MV, Livraghi S, Giamello E et al (2011) Photocatalytic activity of S-and F-doped TiO2 in formic acid mineralization. Photochem Photobiol Sci 10(3):343–349PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    He HY (2010) Solvothermal synthesis and photocatalytic activity of S-doped TiO2 and TiS2 powders. Res Chem Intermed 36(2):155–161CrossRefGoogle Scholar
  60. 60.
    Yang K, Dai Y, Huang BJ (2007) Understanding photocatalytic activity of S-and P-doped TiO2 under visible light from first-principles. J Phys Chem C 111(51):18985–18994CrossRefGoogle Scholar
  61. 61.
    Di Valentin C, Pacchioni G, Selloni A et al (2005) Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. J Phys Chem B 109(23):11414–11419PubMedCrossRefGoogle Scholar
  62. 62.
    Livraghi S, Paganini MC, Giamello E et al (2006) Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. J Am Chem Soc 128(49):15666–15671CrossRefGoogle Scholar
  63. 63.
    Caratto V, Setti L, Campodonico S et al (2012) Synthesis and characterization of nitrogen-doped TiO2 nanoparticles prepared by sol–gel method. J Sol-Gel Sci Technol 63(1):16–22CrossRefGoogle Scholar
  64. 64.
    Dong F, Zhao W, Wu Z et al (2009) Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO2 nanoparticles prepared by thermal decomposition. J Hazard Mater 162(2):763–770PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Hao H, Zhang J (2009) The study of iron (III) and nitrogen co-doped mesoporous TiO2 photocatalysts: synthesis, characterization and activity. Microporous Mesoporous Mater 121(1):52–57CrossRefGoogle Scholar
  66. 66.
    Jagadale TC, Takale SP, Sonawane RS et al (2008) N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol−gel method. J Phys Chem C 112(37):14595–14602CrossRefGoogle Scholar
  67. 67.
    Kim MS, Liu G, Nam WK et al (2011) Preparation of porous carbon-doped TiO2 film by sol–gel method and its application for the removal of gaseous toluene in the optical fiber reactor. J Ind Eng Chem 17(2):223–228CrossRefGoogle Scholar
  68. 68.
    Neville EM, Mattle MJ, Loughrey D et al (2012) Carbon-doped TiO2 and carbon, tungsten-codoped TiO2 through sol–gel processes in the presence of melamine borate: reflections through photocatalysis. J Phys Chem C 116(31):16511–16521CrossRefGoogle Scholar
  69. 69.
    Gopal NO, Lo HH, Ke SC (2008) Chemical state and environment of boron dopant in B, N-codoped anatase TiO2 nanoparticles: an avenue for probing diamagnetic dopants in TiO2 by electron paramagnetic resonance spectroscopy. J Am Chem Soc 130(9):2760–2761PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Czoska AM, Livraghi S, Paganini MC et al (2011) The nitrogen–boron paramagnetic center in visible light sensitized N–B co-doped TiO2. Experimental and theoretical characterization. Phys Chem Chem Phys 13(1):136–143PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Li Y, Ma G, Peng S et al (2008) Boron and nitrogen co-doped titania with enhanced visible-light photocatalytic activity for hydrogen evolution. Appl Surf Sci 254(21):6831–6836CrossRefGoogle Scholar
  72. 72.
    Liu G, Yang HG, Wang X et al (2009) Visible light responsive nitrogen doped anatase TiO2sheets with dominant {001} facets derived from TiN. J Am Chem Soc 131(36):12868–12869PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Wang DH, Jia L, Wu XL et al (2012) One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity. Nanoscale 4(2):576–584PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Zuo F, Bozhilov K, Dillon RJ et al (2012) Active facets on titanium (III)-doped TiO2: an effective strategy to improve the visible-light photocatalytic activity. Angew Chem 124(25):6327–6330CrossRefGoogle Scholar
  75. 75.
    Zhao L, Chen X, Wang X et al (2010) One-step solvothermal synthesis of a carbon@TiO2 dyade structure effectively promoting visible-light photocatalysis. Adv Mater 22(30):3317–3321PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Liu G, Zhao Y, Sun C et al (2008) Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. Angew Chem Int Ed 47(24):4516–4520CrossRefGoogle Scholar
  77. 77.
    Xing MY, Li WK, Wu YM et al (2011) Formation of new structures and their synergistic effects in boron and nitrogen codoped TiO2 for enhancement of photocatalytic performance. J Phys Chem C 115(16):7858–7865CrossRefGoogle Scholar
  78. 78.
    Hopper EM, Sauvage F, Chandiran AK et al (2012) Electrical properties of Nb-, Ga-, and Y- substituted Nanocrystalline Anatase TiO2 prepared by hydrothermal synthesis. J Am Ceram Soc 95(10):3192–3196CrossRefGoogle Scholar
  79. 79.
    Cong Y, Zhang J, Chen F et al (2007) Preparation, photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and iron (III). J Phys Chem C 111(28):10618–10623CrossRefGoogle Scholar
  80. 80.
    Zielińska A, Kowalska E, Sobczak JW et al (2010) Silver-doped TiO2prepared by microemulsion method: surface properties, bio-and photoactivity. Sep Purif Technol 72(3):309–318CrossRefGoogle Scholar
  81. 81.
    Sakthivel S, Kisch H (2003) Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed 42(40):4908–4911CrossRefGoogle Scholar
  82. 82.
    Wu Y, Liu H, Zhang J et al (2009) Enhanced photocatalytic activity of nitrogen-doped titania by deposited with gold. J Phys Chem C 113(33):14689–14695CrossRefGoogle Scholar
  83. 83.
    Xing M, Zhang J, Chen F (2009) Photocatalytic performance of N-doped TiO2 adsorbed with Fe3+ ions under visible light by a redox treatment. J Phys Chem C 113(29):12848–12853CrossRefGoogle Scholar
  84. 84.
    Yu JC, Yu J, Ho W et al (2002) Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 14(9):3808–3816CrossRefGoogle Scholar
  85. 85.
    Goswami P, Ganguli JN (2012) Evaluating the potential of a new titania precursor for the synthesis of mesoporous Fe-doped titania with enhanced photocatalytic activity. Mater Res Bull 47(8):2077–2084CrossRefGoogle Scholar
  86. 86.
    Justicia I, Ordejón P, Canto G et al (2002) Designed self-doped titanium oxide thin films for efficient visible-light Photocatalysis. Adv Mater 14(19):1399–1402CrossRefGoogle Scholar
  87. 87.
    Cao Y, Yang W, Zhang W et al (2004) Improved photocatalytic activity of Sn4+ doped TiO2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition. New J Chem 28(2):218–222CrossRefGoogle Scholar
  88. 88.
    Kurtz SR, Gordon RG (1987) Chemical vapor deposition of doped TiO2 thin films. Thin Solid Films 147(2):167–176CrossRefGoogle Scholar
  89. 89.
    Su Y, Zhang X, Han S et al (2007) F–B-codoping of anodized TiO2 nanotubes using chemical vapor deposition. Electrochem Commun 9(9):2291–2298CrossRefGoogle Scholar
  90. 90.
    Navío J, Colón G, Litter MI et al (1996) Synthesis, characterization and photocatalytic properties of iron-doped titania semiconductors prepared from TiO2 and iron (III) acetylacetonate. J Mol Catal A Chem 106(3):267–276CrossRefGoogle Scholar
  91. 91.
    Yu J, Xiang Q, Zhou M (2009) Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures. Appl Catal B Environ 90(3):595–602CrossRefGoogle Scholar
  92. 92.
    Surolia PK, Tayade RJ, Jasra RV (2007) Effect of anions on the photocatalytic activity of Fe (III) salts impregnated TiO2. Ind Eng Chem Res 46(19):6196–6203CrossRefGoogle Scholar
  93. 93.
    Di Paola A, Marci G, Palmisano L et al (2002) Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-nitrophenol. J Phys Chem B 106(3):637–645CrossRefGoogle Scholar
  94. 94.
    Chen X, Liu L, Peter YY et al (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746–750PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Naldoni A, Allieta M, Santangelo S et al (2012) Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J Am Chem Soc 134(18):7600–7603PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Xia T, Zhang C, Oyler NA et al (2013) Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv Mater 25(47):6905–6910PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Chen X, Liu L, Liu Z et al (2013) Properties of disorder-engineered black titanium dioxide nanoparticles through hydrogenation. Sci Rep 3Google Scholar
  98. 98.
    Khan SU, Al-Shahry M, Ingler WB (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297(5590):2243–2245CrossRefGoogle Scholar
  99. 99.
    In S, Orlov A, Berg R et al (2007) Effective visible light-activated B-doped and B, N-codoped TiO2photocatalysts. J Am Chem Soc 129(45):13790–13791PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Xia T, Zhang W, Murowchick JB et al (2013) A facile method to improve the photocatalytic and lithium-ion rechargeable battery performance of TiO2 nanocrystals. Adv Energy Mater 3(11):1516–1523CrossRefGoogle Scholar
  101. 101.
    Wang Z, Yang C, Lin T et al (2013) H-doped black Titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv Funct Mater 23(43):5444–5450CrossRefGoogle Scholar
  102. 102.
    Kurosu H, Yamanobe T (2012) A specialist periodical report on nuclear magnetic resonance (2011/8) synthetic macromolecules. Specialist Periodical Reports- Nucl Magn Res 41:386Google Scholar
  103. 103.
    Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98(51):13669–13679CrossRefGoogle Scholar
  104. 104.
    Zhang J, Xu LJ, Zhu ZQ et al (2015) Synthesis and properties of (Yb, N)-TiO2 photocatalyst for degradation of methylene blue (MB) under visible light irradiation. Mater Res Bull 70:358–364CrossRefGoogle Scholar
  105. 105.
    Zhu J, Zheng W, He B et al (2004) Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J Mol Catal A Chem 216(1):35–43CrossRefGoogle Scholar
  106. 106.
    Zhu J, Chen F, Zhang J et al (2006) Fe3+-TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization. J Photochem Photobiol A Chem 180(1):196–204CrossRefGoogle Scholar
  107. 107.
    Xiao L, Zhang J, Cong Y et al (2006) Synergistic effects of doped Fe3+ and deposited Au on improving the photocatalytic activity of TiO2. Catal Lett 111(3):207–211CrossRefGoogle Scholar
  108. 108.
    Wu Y, Zhang J, Xiao L et al (2009) Preparation and characterization of TiO2photocatalysts by Fe3+ doping together with Au deposition for the degradation of organic pollutants. Appl Catal B Environ 88(3):525–532CrossRefGoogle Scholar
  109. 109.
    You X, Chen F, Zhang J et al (2005) A novel deposition precipitation method for preparation of Ag-loaded titanium dioxide. Catal Lett 102(3):247–250CrossRefGoogle Scholar
  110. 110.
    Wang W, Zhang J, Chen F et al (2008) Preparation and photocatalytic properties of Fe3+-doped Ag@TiO2 core–shell nanoparticles. J Colloid Interface Sci 323(1):182–186PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Jaiswal R, Patel N, Kothari DC et al (2012) Improved visible light photocatalytic activity of TiO2 co-doped with Vanadium and Nitrogen. Appl Catal B Environ 126:47–54CrossRefGoogle Scholar
  112. 112.
    Sun L, Zhao X, Cheng X et al (2012) Synergistic effects in La/N co-doped TiO2 anatase (101) surface correlated with enhanced visible-light photocatalytic activity. Langmuir 28(13):5882–5891PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Yuan S, Sheng Q, Zhang J et al (2006) Synthesis of Pd nanoparticles in La-doped mesoporous titania with polycrystalline framework. Catal Lett 107(1):19–24CrossRefGoogle Scholar
  114. 114.
    Chen QL, Wang Y, Zhong CY et al (2011) Effect of Co-doped La3+/halogen on visible light photocatalytic activity of TiO2. Trans Tech Publ 239:1923–1928Google Scholar
  115. 115.
    Anandan S, Ikuma Y, Murugesan V (2012) Highly active rare-earth-metal La-doped photocatalysts: fabrication, characterization, and their photocatalytic activity. Int J Photoenerg 2012:1CrossRefGoogle Scholar
  116. 116.
    Ma Y, Xing M, Zhang J et al (2012) Synthesis of well ordered mesoporous Yb, N co-doped TiO2 with superior visible photocatalytic activity. Microporous Mesoporous Mater 156:145–152CrossRefGoogle Scholar
  117. 117.
    Ma Y, Zhang J, Tian B et al (2012) Synthesis of visible light-driven Eu, N co-doped TiO2 and the mechanism of the degradation of salicylic acid. Res Chem Intermed 38(8):1947–1960CrossRefGoogle Scholar
  118. 118.
    Ma Y, Zhang J, Tian B et al (2010) Synthesis and characterization of thermally stable Sm, N co-doped TiO2with highly visible light activity. J Hazard Mater 182(1):386–393PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Zhao Y, Liu J, Shi L et al (2011) Solvothermal preparation of Sn4+ doped anatase TiO2nanocrystals from peroxo-metal-complex and their photocatalytic activity. Appl Catal B Environ 103(3):436–443CrossRefGoogle Scholar
  120. 120.
    Xiufeng Z, Juan L, Lianghai L et al (2011) Preparation of crystalline Sn-doped TiO2and its application in visible-light photocatalysis. J Nanomater 2011:47CrossRefGoogle Scholar
  121. 121.
    Lu G, Linsebigler A, Jr Y et al (1994) Ti3+ defect sites on TiO2(110): production and chemical detection of active sites. J Phys Chem 98(45):11733–11738CrossRefGoogle Scholar
  122. 122.
    Sasikala R, Shirole A, Sudarsan V et al (2009) Highly dispersed phase of SnO2 on TiO2nanoparticles synthesized by polyol-mediated route: photocatalytic activity for hydrogen generation. Int J Hydrog Energy 34(9):3621–3630CrossRefGoogle Scholar
  123. 123.
    Nakamura I, Negishi N, Kutsuna S et al (2000) Role of oxygen vacancy in the plasma-treated TiO2photocatalyst with visible light activity for NO removal. J Mol Catal A Chem 161(1):205–212CrossRefGoogle Scholar
  124. 124.
    Linsebigler AL, Lu G, Jr Y (1995) Photocatalysis on TiO2surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758CrossRefGoogle Scholar
  125. 125.
    Nagaveni K, Hegde MS, Ravishankar N et al (2004) Synthesis and structure of nanocrystalline TiO2with lower band gap showing high photocatalytic activity. Langmuir 20(7):2900–2907PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Kamisaka H, Adachi T, Yamashita K (2005) Theoretical study of the structure and optical properties of carbon-doped rutile and anatase titanium oxides. J Chem Phys 123(8):084704PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Bai H, Liu Z, Sun DD (2012) Facile preparation of monodisperse, carbon doped single crystal rutile TiO2nanorod spheres with a large percentage of reactive (110) facet exposure for highly efficient H2 generation. J Mater Chem 22(36):18801–18807CrossRefGoogle Scholar
  128. 128.
    Yu J, Dai G, Xiang Q et al (2011) Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2sheets with exposed {001} facets. J Mater Chem 21(4):1049–1057CrossRefGoogle Scholar
  129. 129.
    Lin X, Rong F, Ji X et al (2011) Carbon-doped mesoporous TiO2film and its photocatalytic activity. Microporous Mesoporous Mater 142(1):276–281CrossRefGoogle Scholar
  130. 130.
    Czoska AM, Livraghi S, Chiesa M et al (2008) The nature of defects in fluorine-doped TiO2. J Phys Chem C 112(24):8951–8956CrossRefGoogle Scholar
  131. 131.
    Fattori A, Peter LM, Wang H et al (2010) Fast hole surface conduction observed for indoline sensitizer dyes immobilized at fluorine-doped tin oxide− TiO2 surfaces. J Phys Chem C 114(27):11822–11828CrossRefGoogle Scholar
  132. 132.
    Shifu C, Yunguang Y, Wei L (2011) Preparation, characterization and activity evaluation of TiN/F-TiO2 photocatalyst. J Hazard Mater 186(2):1560–1567PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Ma HL, Zhang DH, Win SZ et al (1996) Electrical and optical properties of F-doped textured SnO2 films deposited by APCVD. Sol Energy Mater Sol Cells 40(4):371–380CrossRefGoogle Scholar
  134. 134.
    Minami T (2000) New n-type transparent conducting oxides. MRS Bull 25(8):38–44CrossRefGoogle Scholar
  135. 135.
    Rakhshani AE, Makdisi Y, Ramazaniyan HA (1998) Electronic and optical properties of fluorine-doped tin oxide films. J Appl Phys 83(2):1049–1057CrossRefGoogle Scholar
  136. 136.
    Cui Y, Du H, Wen LS et al (2009) Investigation of electronic structures of F-doped TiO2 by first-principles calculation. Trans Tech Publ 620:647–650Google Scholar
  137. 137.
    Liu B, Gu M, Liu X et al (2010) First-principles study of fluorine-doped zinc oxide. Appl Phys Lett 97(12):122101CrossRefGoogle Scholar
  138. 138.
    Gonzalez-Hernandez R, Martinez AI, Falcony C et al (2010) Study of the properties of undoped and fluorine doped zinc oxide nanoparticles. Mater Lett 64(13):1493–1495CrossRefGoogle Scholar
  139. 139.
    Zhao W, Ma W, Chen C et al (2004) Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-x B x under visible irradiation. J Am Chem Soc 126(15):4782–4783PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Moon SC, Mametsuka H, Suzuki E et al (1998) Characterization of titanium-boron binary oxides and their photocatalytic activity for stoichiometric decomposition of water. Catal Today 45(1):79–84CrossRefGoogle Scholar
  141. 141.
    Chen D, Yang D, Wang Q et al (2006) Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles. Ind Eng Chem Res 45(12):4110–4116CrossRefGoogle Scholar
  142. 142.
    Jung KY, Park SB, Ihm SK (2004) Local structure and photocatalytic activity of B2O3–SiO2/TiO2 ternary mixed oxides prepared by sol–gel method. Appl Catal B Environ 51(4):239–245CrossRefGoogle Scholar
  143. 143.
    Xing M, Wu Y, Zhang J et al (2010) Effect of synergy on the visible light activity of B, N and Fe co-doped TiO2for the degradation of MO. Nanoscale 2(7):1233–1239PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Wu Y, Xing M, Zhang J (2011) Gel-hydrothermal synthesis of carbon and boron co-doped TiO2and evaluating its photocatalytic activity. J Hazard Mater 192(1):368–373PubMedPubMedCentralGoogle Scholar
  145. 145.
    Naik B, Parida KM (2010) Solar light active photodegradation of phenol over a Fe x Ti1−xO2−yNy Nanophotocatalyst. Ind Eng Chem Res 49(18):8339–8346CrossRefGoogle Scholar
  146. 146.
    Wang W, Lu C, Ni Y et al (2012) Preparation and characterization of visible-light-driven N–F–Ta tri-doped TiO2 photocatalysts. Appl Surf Sci 258(22):8696–8703CrossRefGoogle Scholar
  147. 147.
    Cong Y, Chen F, Zhang J et al (2006) Carbon and nitrogen-codoped TiO2 with high visible light photocatalytic activity. Chem Lett 35(7):800–801CrossRefGoogle Scholar
  148. 148.
    Gombac V, De Rogatis L, Gasparotto A et al (2007) TiO2 nanopowders doped with boron and nitrogen for photocatalytic applications. Chem Phys 339(1):111–123CrossRefGoogle Scholar
  149. 149.
    Komai Y, Okitsu K, Nishimura R et al (2011) Visible light response of nitrogen and sulfur co-doped TiO2 photocatalysts fabricated by anodic oxidation. Catal Today 164(1):399–403CrossRefGoogle Scholar
  150. 150.
    Yang G, Xiao T, Sloan J et al (2011) Low-temperature synthesis of visible-light active fluorine/sulfur Co-doped mesoporous TiO2 microspheres. Chem Eur J 17(4):1096–1100CrossRefGoogle Scholar
  151. 151.
    Wu Y, Xing M, Tian B et al (2010) Preparation of nitrogen and fluorine co-doped mesoporous TiO2 microsphere and photodegradation of acid orange 7 under visible light. Chem Eng J 162(2):710–717CrossRefGoogle Scholar
  152. 152.
    Wei H, Wu Y, Lun N et al (2004) Preparation and photocatalysis of TiO2 nanoparticles co-doped with nitrogen and lanthanum. J Mater Sci 39(4):1305–1308CrossRefGoogle Scholar
  153. 153.
    Khan R, Kim SW, Kim TJ et al (2008) Comparative study of the photocatalytic performance of boron–iron Co-doped and boron-doped TiO2 nanoparticles. Mater Chem Phys 112(1):167–172CrossRefGoogle Scholar
  154. 154.
    Wei F, Zhu T (2007) Preparation and photocatalytic property of S and Fe co-doped TiO2 nanoparticles. Appl Chem Ind 36:421–424Google Scholar
  155. 155.
    Devi LG, Nagaraj B, Rajashekhar KE (2012) Synergistic effect of Ag deposition and nitrogen doping in TiO2 for the degradation of phenol under solar irradiation in presence of electron acceptor. Chem Eng J 181:259–266CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jinlong Zhang
    • 1
  • Baozhu Tian
    • 1
  • Lingzhi Wang
    • 1
  • Mingyang Xing
    • 1
  • Juying Lei
    • 1
  1. 1.Key Laboratory for Advanced Materials & Institute of Fine ChemicalsEast China University of Science & TechnologyShanghaiChina

Personalised recommendations