Photocatalysis pp 107-131 | Cite as

Graphene-Modified TiO2 with Enhanced Visible Light Photocatalytic Activities

  • Jinlong Zhang
  • Baozhu Tian
  • Lingzhi Wang
  • Mingyang Xing
  • Juying Lei
Part of the Lecture Notes in Chemistry book series (LNC, volume 100)


Titanium dioxide (TiO2)-based photocatalysis has attracted much attention, and TiO2 is extensively used as a semiconductor in photocatalysis due to its excellent and stable UV light-driven photocatalytic activity. However, owing to the introduction of electron and hole recombination centers in the TiO2, most reported modifications such as impurity doping, noble metal loading, and dye sensitization on TiO2 only have a limited role in promoting its solar light activity. The rapid development of graphene brings a new breakthrough in the field of photocatalysis. In this chapter, we will introduce the recent progress of TiO2/graphene composite application in photocatalysis and focus on the preparation, characterization, and application of two-/three-dimensional TiO2/graphene composites in photocatalysis. Finally, we will give a prospective of graphene-based materials in the photocatalysis especially for their industrial application in dealing with the environmental purification.


Titanium dioxide (TiO2Photocatalysis TiO2/graphene composites Environmental purification 


  1. 1.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  2. 2.
    Bach U, Lupo D, Comte P, Moser JE, Weissortel F et al (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395:583–585CrossRefGoogle Scholar
  3. 3.
    Crossland EJW, Noel N, Sivaram V et al (2013) Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 495:215–219CrossRefGoogle Scholar
  4. 4.
    O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  5. 5.
    Yang H, Sun C, Qiao S, Zou J, Liu G et al (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453:638–641CrossRefGoogle Scholar
  6. 6.
    Thompson TL, Yates JT (2006) Surface science studies of the photoactivation of TiO2 new photochemical processes. Chem Rev 106:4428–4453CrossRefGoogle Scholar
  7. 7.
    Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758CrossRefGoogle Scholar
  8. 8.
    Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986CrossRefGoogle Scholar
  9. 9.
    Xing M, Zhang J, Chen F (2009) New approaches to prepare nitrogen-doped TiO2 photocatalysts and study on their photocatalytic activities in visible light. Appl Catal B Environ 89:563–569CrossRefGoogle Scholar
  10. 10.
    Xing M, Zhang J, Chen F (2009) Photocatalytic performance of N-doped TiO2 adsorbed with Fe3+ ions under visible light by a redox treatment. J Phys Chem C 113:12848–12853CrossRefGoogle Scholar
  11. 11.
    Xing M, Wu Y, Zhang J, Chen F (2010) Effect of synergy on the visible light activity of B, N and Fe Co-doped TiO2 for the degradation of MO. Nanoscale 2:1233–1239CrossRefGoogle Scholar
  12. 12.
    Xing M, Zhang J, Chen F, Tian B (2011) An economic method to prepare vacuum activated photocatalysts with high photo-activities and photo-sensitivities. Chem Commun 47:4947–4949CrossRefGoogle Scholar
  13. 13.
    Chen X, Mao S (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959CrossRefGoogle Scholar
  14. 14.
    Qi D, Xing M, Zhang J (2014) Hydrophobic carbon-doped TiO2/MCF-F composite as a high performance photocatalyst. J Phys Chem C 118:7329–7336CrossRefGoogle Scholar
  15. 15.
    Cong Y, Chen F, Zhang J, Anpo M (2006) Carbon and nitrogen-codoped TiO2 with high visible light photocatalytic activity. Chem Lett 35:800–801CrossRefGoogle Scholar
  16. 16.
    Wu Y, Xing M, Tian B, Zhang J, Chen F (2010) Preparation of nitrogen and fluorine Co-doped mesoporous TiO2 microsphere and photodegradation of acid orange 7 under visible light. Chem Eng J 162:710–717CrossRefGoogle Scholar
  17. 17.
    Wu Y, Xing M, Zhang J (2011) Gel-hydrothermal synthesis of carbon and boron Co-doped TiO2 and evaluating its photocatalytic activity. J Hazard Mater 192:368–373PubMedGoogle Scholar
  18. 18.
    Xing M, Qi D, Zhang J, Chen F (2011) One-step hydrothermal method to prepare carbon and lanthanum Co-doped TiO2 nanocrystals with exposed {001} facets and their high UV and visible-light photocatalytic activity. Chem Eur J 17:11432–11436CrossRefGoogle Scholar
  19. 19.
    Xing M, Fang W, Nasir M, Ma Y, Zhang J, Anpo M (2013) Self-doped Ti3+-enhanced TiO2 nanoparticles with a high-performance photocatalysis. J Catal 297:236–243CrossRefGoogle Scholar
  20. 20.
    Xing M, Li X, Zhang J (2014) Synergistic effect on the visible light activity of Ti3+ doped TiO2 nanorods/boron doped graphene composite. Sci Rep 4:5493CrossRefGoogle Scholar
  21. 21.
    Yang P, Lu C, Hua N, Du Y (2002) Titanium dioxide nanoparticles Co-doped with Fe3+ and Eu3+ ions for photocatalysis. Mater Lett 57:794–801CrossRefGoogle Scholar
  22. 22.
    Yu L, Yuan S, Shi LY, Zhao Y, Fang J (2010) Synthesis of Cu2+ doped mesoporous titania and investigation of its photocatalytic ability under visible light. Microporous Mesoporous Mater 134:108–114CrossRefGoogle Scholar
  23. 23.
    Yuan X, Zhang J, Anpo M, He D (2010) Synthesis of Fe3+ doped ordered mesoporous TiO2 with enhanced visible light photocatalytic activity and highly crystallized anatase wall. Res Chem Intermed 36:83–93CrossRefGoogle Scholar
  24. 24.
    Cong Y, Zhang J, Chen F, Anpo M, He D (2007) Preparation, photocatalytic activity, and mechanism of nano-TiO2 Co-doped with nitrogen and iron (III). J Phys Chem C 111:10618–10623CrossRefGoogle Scholar
  25. 25.
    Chen X, Lu D, Lin S (2012) Preparation and properties of sulfur-doped visible-light response S-TiO2/SiO2 photocatalyst. Chin J Catal 33:993–999Google Scholar
  26. 26.
    Cheng C, Amini A, Zhu C, Xu Z et al (2014) Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures. Sci Rep 4:4181CrossRefGoogle Scholar
  27. 27.
    Dong F, Sun Y, Fu M (2012) Enhanced visible light photocatalytic activity of V2O5 cluster modified N-doped TiO2 for degradation of toluene in air. Int J Photoenergy 2012Google Scholar
  28. 28.
    Dong R, Tian B, Zhang J, Wang T, Tao Q, Bao S et al (2013) AgBr@Ag/TiO2 core-shell composite with excellent visible light photocatalytic activity and hydrothermal stability. Catal Commun 38:16–20CrossRefGoogle Scholar
  29. 29.
    He C, Tian B, Zhang J (2010) Thermally stable SiO2-doped mesoporous anatase TiO2 with large surface area and excellent photocatalytic activity. J Colloid Interface Sci 344:382–389CrossRefGoogle Scholar
  30. 30.
    Liu Y, Xing M, Zhang J (2014) Ti3+ and carbon Co-doped TiO2 with improved visible light photocatalytic activity. Chin J Catal 35:1511–1519CrossRefGoogle Scholar
  31. 31.
    Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534CrossRefGoogle Scholar
  32. 32.
    Li Z, Wang J, Liu X et al (2011) Electrostatic layer-by-layer self-assembly multilayer films based on graphene and manganese dioxide sheets as novel electrode materials for supercapacitors. J Mater Chem 21:3397–3403CrossRefGoogle Scholar
  33. 33.
    Chen Z, Berciaud S, Nuckolls C, Heinz TF, Brus LE (2010) Energy transfer from individual semiconductor nanocrystals to graphene. ACS Nano 4:2964–2968CrossRefGoogle Scholar
  34. 34.
    Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48:7752–7777CrossRefGoogle Scholar
  35. 35.
    Huang Q, Tian S, Zeng et al (2013) Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C–Ti bond. ACS Catal 3:1477–1485CrossRefGoogle Scholar
  36. 36.
    Chen C, Cai W, Long M et al (2010) Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano 4:6425–6432CrossRefGoogle Scholar
  37. 37.
    Wang D, Choi D, Li J et al (2009) Self-assembled TiO2/graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3:907–914CrossRefGoogle Scholar
  38. 38.
    Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491CrossRefGoogle Scholar
  39. 39.
    Xin X, Zhou X, Wu J et al (2012) Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries. ACS Nano 6:11035–11043CrossRefGoogle Scholar
  40. 40.
    Zhang Y, Tang ZR, Fu X, Xu Y (2010) TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano 4:7303–7314CrossRefGoogle Scholar
  41. 41.
    Zhang H, Lv X, Li Y, Wang Y, Li J (2009) P25-graphene composite as a high performance photocatalyst. ACS Nano 4:380–386CrossRefGoogle Scholar
  42. 42.
    Liang Y, Wang H, Chen Z, Dai H (2010) TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res 3:701–705CrossRefGoogle Scholar
  43. 43.
    Lee JS, You KH, Park CB (2012) Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv Mater 24:1084–1088CrossRefGoogle Scholar
  44. 44.
    Tan LL, Ong WJ, Chai SP, Mohamed A (2013) Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide. Nanoscale Res Lett 8:1–9CrossRefGoogle Scholar
  45. 45.
    Sanjaya D, Ruperto G, Khiem V et al (2012) Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal 2:949–956CrossRefGoogle Scholar
  46. 46.
    Morales-Torres S, Pastrana-Martínez L, Figueiredo J, Faria J, Silva AT (2012) Design of graphene-based TiO2 photocatalysts-a review. Environ Sci Pollut Res 19:3676–3687CrossRefGoogle Scholar
  47. 47.
    Zhang L, Xi Z, Xing M, Zhang J (2013) Effects of the preparation order of the ternary P25/GO/Pt hybrid photocatalysts on hydrogen production. Int J Hydrog Energy 38:9169–9177CrossRefGoogle Scholar
  48. 48.
    Xing M, Shen F, Qiu B, Zhang J (2014) Highly-dispersed boron-doped graphene nanosheets loaded with TiO2 nanoparticles for enhancing CO2 photoreduction. Sci Rep 4:6341–6346CrossRefGoogle Scholar
  49. 49.
    Guo S, Zhen M, Liu L et al (2016) Facile preparation and lithium storage properties of TiO2@graphene comppsite electrodes with low carbon content. Chem Eur J 22:11943–11948CrossRefGoogle Scholar
  50. 50.
    Kamegawa T, Yamahana D, Yamashita H (2010) Graphene coating of TiO2 nanoparticles loaded on mesoporous silica for enhancement of photocatalytic activity. J Phys Chem C 114:15049–15053CrossRefGoogle Scholar
  51. 51.
    Li W, Wang F, Feng S et al (2013) Sol-gel design strategy for ultradispersed TiO2 nanoparticles on graphene for high-performance lithium ion batteries. J Am Chem Soc 135:18300–18303CrossRefGoogle Scholar
  52. 52.
    Sellappan R, Sun J, Galeckas A, Lindvall N et al (2013) Influence of graphene synthesizing techniques on the photocatalytic performance of graphene-TiO2 nanocomposites. Phys Chem Chem Phys 15:15528–15537CrossRefGoogle Scholar
  53. 53.
    Qiu B, Zhou Y, Ma Y, Yang X, Sheng W, Xing M, Zhang J (2015) Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis. Sci Rep 5:8591–8589CrossRefGoogle Scholar
  54. 54.
    Mohamed RM (2012) UV-assisted photocatalytic synthesis of TiO2-reduced graphene oxide with enhanced photocatalytic activity in decomposition of sarin in gas phase. Desalin Water Treat 50:147–156CrossRefGoogle Scholar
  55. 55.
    Pu X, Zhang D, Gao Y, Shao X, Ding G, Li S, Zhao S (2013) One-pot microwave-assisted combustion synthesis of graphene oxide–TiO2 hybrids for photodegradation of methyl orange. J Alloys Compd 551:382–388CrossRefGoogle Scholar
  56. 56.
    Li L, Yu L, Lin Z et al (2016) Reduced TiO2-graphene oxide heterostructure as broad spectrum-driven efficient water-splitting photocatalysts. ACS Appl Mater Interfaces 8:8536–8545CrossRefGoogle Scholar
  57. 57.
    Liu J, Niu Y, He X et al (2016) Photocatalytic reduction of CO2 using TiO2-graphene nanocomposites. J Nanomater 2016:1–5Google Scholar
  58. 58.
    Peng G, Ellis J, Xu G et al (2016) In situ grown TiO2 nanospindles facilitate the formation of holey reduced graphene oxide by photodegradation. ACS Appl Mater Interfaces 8:7403–7410CrossRefGoogle Scholar
  59. 59.
    Wu Y, Wang B, Ma Y et al (2010) Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films. Nano Res 3:661–669CrossRefGoogle Scholar
  60. 60.
    Zhou K, Zhu Y, Yang X, Jiang X, Li C (2011) Preparation of graphene-TiO2 composites with enhanced photocatalytic activity. New J Chem 35:353–359CrossRefGoogle Scholar
  61. 61.
    Zhao Y, Hu C, Hu Y, Cheng H, Shi G, Qu L (2012) A versatile, ultralight, nitrogen-doped graphene framework. Angew Chem Int Ed 51:11371–11375CrossRefGoogle Scholar
  62. 62.
    Sun H, Xu Z, Gao C (2013) Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater 25:2554–2560CrossRefGoogle Scholar
  63. 63.
    Cong H, Wang P, Yu S (2014) Highly elastic and superstretchable graphene oxide/polyacrylamide hydrogels. Small 10:448–453CrossRefGoogle Scholar
  64. 64.
    Wan C, Lu Y, Jin C, Sun Q, Li J (2014) A facile low-temperature hydrothermal method to prepare anatase titania/cellulose aerogels with strong photocatalytic activities for rhodamine B and methyl orange degradations. J Nanomater:717016Google Scholar
  65. 65.
    Zhang Z, Xiao F, Guo Y, Wang S, Liu Y (2013) One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities. ACS Appl Mater Interfaces 5:2227–2233CrossRefGoogle Scholar
  66. 66.
    Qiu B, Xing M, Zhang J (2014) Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J Amer Chem Soc 136:5852–5855CrossRefGoogle Scholar
  67. 67.
    Hou C, Zhang Q, Li Y, Wang H (2012) P25-graphene hydrogels: room-temperature synthesis and application for removal of methylene blue from aqueous solution. J Hazard Mater 205:229–235CrossRefGoogle Scholar
  68. 68.
    Xing M, Fang W, Yang X, Tian B, Zhang J (2014) Highly-dispersed boron-doped graphene nanoribbons with enhancing conductibilities and photocatalysis. Chem Commun 136:5852–5855Google Scholar
  69. 69.
    Fan W, Lai Q, Zhang Q, Wang Y (2011) Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution. J Phys Chem C 115:10694–10701CrossRefGoogle Scholar
  70. 70.
    Wang Z, Huang B, Dai Y et al (2012) Crystal facets controlled synthesis of graphene@TiO2 nanocomposites by a one-pot hydrothermal process. Cryst Eng Comm 14:1687–1692CrossRefGoogle Scholar
  71. 71.
    Tu W, Zhou Y, Liu Q et al (2013) An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Adv Funct Mater 23:1743–1749CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jinlong Zhang
    • 1
  • Baozhu Tian
    • 1
  • Lingzhi Wang
    • 1
  • Mingyang Xing
    • 1
  • Juying Lei
    • 1
  1. 1.Key Laboratory for Advanced Materials & Institute of Fine ChemicalsEast China University of Science & TechnologyShanghaiChina

Personalised recommendations