Photocatalysis pp 375-402 | Cite as

Transition Metal Phosphide As Cocatalysts for Semiconductor-Based Photocatalytic Hydrogen Evolution Reaction

  • Jinlong Zhang
  • Baozhu Tian
  • Lingzhi Wang
  • Mingyang Xing
  • Juying Lei
Part of the Lecture Notes in Chemistry book series (LNC, volume 100)


To achieve sustainable production of hydrogen from photocatalytic water reduction, fabricating earth-abundant, highly efficient, and long-term stable photocatalytic system is of great significance. Owing to the exceptional electronic conductivity and tunable molecular structure, transition metal phosphides (TMPs) have been regarded as an excellent cocatalyst to substitute for the noble metal materials in photocatalytic water reduction. In this chapter, we summarize the recent progress of TMPs as cocatalysts in photocatalytic water reduction. The preparation methods of TMPs and P atom effects on hydrogen evolution reaction are firstly discussed. Then, TMPs as cocatalysts in photocatalytic water reduction are also discussed. Finally, conclusion and prospect for future working directions of TMPs are proposed.


Photocatalysis Water reduction Cocatalyst Phosphides Charge transfer 


  1. 1.
    Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 52(29):7372–7408CrossRefGoogle Scholar
  2. 2.
    Fontecave M (2011) Energy for a sustainable world. From the oil age to a sun-powered future. By Nicola Armaroli and Vincenzo Balzani. Angew Chem Int Ed 50(30):6704–6705CrossRefGoogle Scholar
  3. 3.
    Pasten C, Santamarina JC (2012) Energy and quality of life. Energy Policy 49:468–476CrossRefGoogle Scholar
  4. 4.
    Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ (2014) Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev 43(22):7787–7812CrossRefGoogle Scholar
  5. 5.
    Du P, Eisenberg R (2012) Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy Environ Sci 5(3):6012–6021CrossRefGoogle Scholar
  6. 6.
    Qiu B, Xing M, Zhang J (2014) Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J Am Chem Soc 136(16):5852–5855CrossRefGoogle Scholar
  7. 7.
    Qiu B, Zhou Y, Ma Y, Yang X, Sheng W, Xing M, Zhang J (2015) Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis. Sci Rep 5:8591CrossRefGoogle Scholar
  8. 8.
    Qiu B, Deng Y, Du M, Xing M, Zhang J (2016) Ultradispersed cobalt ferrite nanoparticles assembled in graphene aerogel for continuous Photo-Fenton reaction and enhanced lithium storage performance. Sci Rep 6:29099–29108CrossRefGoogle Scholar
  9. 9.
    Qiu B, Li Q, Shen B, Xing M, Zhang J (2016) Stöber-like method to synthesize ultradispersed Fe3O4 nanoparticles on graphene with excellent Photo-Fenton reaction and high-performance lithium storage. Appl Catal B Environ 183:216–223CrossRefGoogle Scholar
  10. 10.
    Qiu B, Zhu Q, Du M, Fan L, Xing M, Zhang J (2017) Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-scheme photocatalytic water splitting. Angew Chem 129(10):2728–2732CrossRefGoogle Scholar
  11. 11.
    Xing M, Zhang J, Qiu B, Tian B, Anpo M, Che M (2015) A brown mesoporous TiO2−x/MCF composite with an extremely high quantum yield of solar energy photocatalysis for H2 evolution. Small 11(16):1920–1929CrossRefGoogle Scholar
  12. 12.
    Zhou Y, Yi Q, Xing M, Shang L, Zhang T, Zhang J (2016) Graphene modified mesoporous titania single crystals with controlled and selective photoredox surfaces. Chem Commun 52(8):1689–1692CrossRefGoogle Scholar
  13. 13.
    Jiao Y, Zheng Y, Jaroniec M, Qiao S (2015) Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chem Soc Rev 44(8):2060–2086CrossRefGoogle Scholar
  14. 14.
    Shi Y, Zhang B (2016) Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev 45(6):1529–1541CrossRefGoogle Scholar
  15. 15.
    Iqbal W, Qiu B, Lei J, Wang L, Zhang J, Anpo M (2017) One-step large-scale highly active g-C3N4 nanosheets for efficient sunlight-driven photocatalytic hydrogen production. Dalton T 46(32):10678–10684CrossRefGoogle Scholar
  16. 16.
    Qiu B, Zhong C, Xing M, Zhang J (2015) Facile preparation of C-modified TiO2 supported on MCF for high visible-light-driven photocatalysis. RSC Adv 5(23):17802–17808CrossRefGoogle Scholar
  17. 17.
    Wang Y, Lkhamjav S, Qiu B, Dong C, Dong C, Zhou Y, Shen B, Xing M, Zhang J (2017) A facile strategy to prepare Fe3+ modified brookite TiO2 with high photocatalytic activity under ultraviolet light and visible light. Res Chem Intermediat 43(4):2055–2066CrossRefGoogle Scholar
  18. 18.
    Ai G, Li H, Liu S, Mo R, Zhong J (2015) Solar water splitting by TiO2/CdS/Co-Pi nanowire array photoanode enhanced with Co-Pi as hole transfer relay and CdS as light absorber. Adv Funct Mater 25(35):5706–5713CrossRefGoogle Scholar
  19. 19.
    Yuan Y, Yin L, Cao S, Xu G, Li C, Xue C (2015) Improving photocatalytic hydrogen production of metal-organic framework UiO-66 octahedrons by dye-sensitization. Appl Catal B Environ 168:572–576CrossRefGoogle Scholar
  20. 20.
    Li H, Shang J, Ai Z, Zhang L (2015) Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets. J Am Chem Soc 137(19):6393–6399CrossRefGoogle Scholar
  21. 21.
    Hou W, Cronin SB (2013) A review of surface plasmon resonance-enhanced photocatalysis. Adv Funct Mater 23(13):1612–1619CrossRefGoogle Scholar
  22. 22.
    Qiu B, Deng Y, Li Q, Shen B, Xing M, Zhang J (2016) Rational design of a unique ternarystructure for highly photocatalytic nitrobenzene reduction. J Phys Chem C 120(22):12125–12131CrossRefGoogle Scholar
  23. 23.
    Tsuji I, Kato H, Kudo A (2005) Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS-CuInS2-AgInS2 solid-solution photocatalyst. Angew Chem 117(23):3631–3634CrossRefGoogle Scholar
  24. 24.
    Zhang J, Wang Y, Zhang J, Lin Z, Huang F, Yu J (2013) Enhanced photocatalytic hydrogen production activities of Au-loaded ZnS flowers. ACS Appl Mater Inter 5(3):1031–1037CrossRefGoogle Scholar
  25. 25.
    Yoshida M, Yamakata A, Takanabe K, Kubota J, Osawa M, Domen K (2009) ATR-SEIRAS investigation of the fermi level of Pt cocatalyst on a GaN photocatalyst for hydrogen evolution under irradiation. J Am Chem Soc 131(37):13218–13219CrossRefGoogle Scholar
  26. 26.
    Sreethawong T, Yoshikawa S (2005) Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au-loaded mesoporous TiO2 photocatalysts. Catal Commun 6(10):661–668CrossRefGoogle Scholar
  27. 27.
    Maeda K, Xiong A, Yoshinaga T, Ikeda T, Sakamoto N, Hisatomi T, Takashima M, Lu D, Kanehara M, Setoyama T (2010) Photocatalytic overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light. Angew Chem 122(24):4190–4193CrossRefGoogle Scholar
  28. 28.
    Iizuka K, Wato T, Miseki Y, Saito K, Kudo A (2011) Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A= Ca, Sr, and Ba) using water as a reducingreagent. J Am Chem Soc 133(51):20863–20868CrossRefGoogle Scholar
  29. 29.
    Yang J, Wang D, Han H, Li C (2013) Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Accounts Chem Res 46(8):1900–1909CrossRefGoogle Scholar
  30. 30.
    Li X, Bi W, Zhang L, Tao S, Chu W, Zhang Q, Luo Y, Wu C, Xie Y (2016) Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv Mater 28(12):2427–2431CrossRefGoogle Scholar
  31. 31.
    Callejas JF, McEnaney JM, Read CG, Crompton JC, Biacchi AJ, Popczun EJ, Gordon TR, Lewis NS, Schaak RE (2014) Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles. ACS Nano 8(11):11101–11107CrossRefGoogle Scholar
  32. 32.
    Reddy DA, Kim HK, Kim Y, Lee S, Choi J, Islam MJ, Kumar DP, Kim TK (2016) Multicomponent transition metal phosphides derived from layered double hydroxide double-shelled nanocages as an efficient non-precious co-catalyst for hydrogen production. J Mater Chem A 4(36):13890–13898CrossRefGoogle Scholar
  33. 33.
    Sweeny NP, Rohrer CS, Brown O (1958) Dinickel phosphide as a heterogeneous catalyst for the vapor phase reduction of nitrobenzene with hydrogen to aniline and water. J Am Chem Soc 80(4):799–800CrossRefGoogle Scholar
  34. 34.
    Sun J, Liu C, Yang P (2011) Surfactant-free, large-scale, solution-liquid-solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction. J Am Chem Soc 133(48):19306–19309CrossRefGoogle Scholar
  35. 35.
    Lo CT, Kuo PY (2010) Synthesis and magnetic properties of iron phosphide nanorods. J Phys Chem C 114(11):4808–4815CrossRefGoogle Scholar
  36. 36.
    McCarty WJ, Yang X, DePue Anderson LJ, Jones RA (2012) Chemical vapour deposition of amorphous Ru(P) thin films from Ru trialkylphosphite hydride complexes. Dalton T 41(43):13496–13503CrossRefGoogle Scholar
  37. 37.
    Shi Y, Xu Y, Zhuo S, Zhang J, Zhang B (2015) Ni2P nanosheets/Ni foam composite electrode for long-lived and pH-tolerable electrochemical hydrogen generation. ACS Appl Mater Inter 7(4):2376–2234CrossRefGoogle Scholar
  38. 38.
    Lu Y, Tu J, Xiang J, Wang X, Zhang J, Mai Y, Mao S (2011) Improved electrochemical performance of self-assembled hierarchical nanostructured nickel phosphide as a negative electrode for lithium ion batteries. J Phys Chem C 115(48):23760–23767CrossRefGoogle Scholar
  39. 39.
    Xu Y, Wu R, Zhang J, Shi Y, Zhang B (2013) Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction. Chem Commun 49(59):6656–6658CrossRefGoogle Scholar
  40. 40.
    Popczun EJ, Roske CW, Read CG, Crompton JC, McEnaney JM, Callejas JF, Lewis NS, Schaak RE (2015) Highly branched cobalt phosphide nanostructures for hydrogen-evolution electrocatalysis. J Mater Chem A 3(10):5420–5425CrossRefGoogle Scholar
  41. 41.
    Zhang H, Ha DH, Hovden R, Kourkoutis LF, Robinson RD (2010) Controlled synthesis of uniform cobalt phosphide hyperbranched nanocrystals using tri-n-octylphosphine oxide as a phosphorus source. Nano Lett 11(1):188–197CrossRefGoogle Scholar
  42. 42.
    Sun Z, Lv B, Li J, Xiao M, Wang X, Du P (2016) Core-shell amorphous cobalt phosphide/cadmium sulfide semiconductor nanorods for exceptional photocatalytic hydrogen production under visible light. J Mater Chem A 4(5):1598–1602CrossRefGoogle Scholar
  43. 43.
    Fullenwarth J, Darwiche A, Soares A, Donnadieu B, Monconduit L (2014) NiP3: a promising negative electrode for Li-and Na-ion batteries. J Mater Chem A 2(7):2050–2059CrossRefGoogle Scholar
  44. 44.
    Li Q, Li Z, Zhang Z, Li C, Ma J, Wang C, Ge X, Dong S, Yin L (2016) Low-temperature solution-based phosphorization reaction route to Sn4P3/reduced graphene oxide nanohybrids as anodes for sodium ion batteries. Advanced Energy Mater 6(15):1600376CrossRefGoogle Scholar
  45. 45.
    Sun Z, Zheng H, Li J, Du P (2015) Extra-ordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts. Energy Environ Sci 8(9):2668–2676CrossRefGoogle Scholar
  46. 46.
    Lou P, Cui Z, Jia Z, Sun J, Tan Y, Guo X (2017) Monodispersed carbon-coated cubic NiP2 canoparticles anchored on carbon canotubes as ultra-long-life anodes for reversible lithium storage. ACS Nano 11(4):3705–3715CrossRefGoogle Scholar
  47. 47.
    Wu T, Chen S, Zhang D, Hou J (2015) Facile preparation of semimetallic MoP2 as a novel visible light driven photocatalyst with high photocatalytic activity. J Mater Chem A 3(19):10360–10367CrossRefGoogle Scholar
  48. 48.
    Pu Z, Liu Q, Asiri AM, Sun X (2014) Tungsten phosphide nanorod arrays directly grown on carbon cloth: a highly efficient and stable hydrogen evolution cathode at all pH values. ACS Appl Mater Inter 6(24):21874–21879CrossRefGoogle Scholar
  49. 49.
    He P, Yu X, Lou X (2017) Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew Chem 129(14):3955–3958CrossRefGoogle Scholar
  50. 50.
    Cao S, Chen Y, Wang C, He P, Fu W (2014) Highly efficient photocatalytic hydrogen evolution by nickel phosphide nanoparticles from aqueous solution. Chem Commun 50(72):10427–10429CrossRefGoogle Scholar
  51. 51.
    Feng L, Li K, Chang J, Liu C, Xing W (2015) Nanostructured PtRu/C catalyst promoted by CoP as an efficient and robust anode catalyst in direct methanol fuel cells. Nano Energy 15:462–469CrossRefGoogle Scholar
  52. 52.
    Tong Y, Gu C, Zhang J, Huang M, Tang H, Wang X, Tu J (2015) Three-dimensional astrocyte-network Ni-P-O compound with superior electrocatalytic activity and stability for methanol oxidation in alkaline environments. J Mater Chem A 3(8):4669–4678CrossRefGoogle Scholar
  53. 53.
    Guo S, Deng Z, Li M, Jiang B, Tian C, Pan Q, Fu H (2016) Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew Chem Int Ed 55(5):1830–1834CrossRefGoogle Scholar
  54. 54.
    Liu P, Rodriguez JA (2005) Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P (001) surface: the importance of ensemble effect. J Am Chem Soc 127(42):14871–14878CrossRefGoogle Scholar
  55. 55.
    Xiao P, Sk MA, Thia L, Ge X, Lim RJ, Wang J, Lim KH, Wang X (2014) Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ Sci 7(8):2624–2629CrossRefGoogle Scholar
  56. 56.
    Yan H, Tian C, Wang L, Wu A, Meng M, Zhao L, Fu H (2015) Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angew Chem Int Ed 54(21):6325–6329CrossRefGoogle Scholar
  57. 57.
    Pan Y, Liu Y, Zhao J, Yang K, Liang J, Liu D, Hu W, Liu D, Liu Y, Liu C (2015) Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution. J Mater Chem A 3(4):1656–1665CrossRefGoogle Scholar
  58. 58.
    Callejas JF, Read CG, Popczun EJ, McEnaney JM, Schaak RE (2015) Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP. Chem Mater 27(10):3769–3774CrossRefGoogle Scholar
  59. 59.
    Carenco S, Portehault D, Boissiere C, Mezailles N, Sanchez C (2013) Nanoscaled metal borides and phosphides: recent developments and perspectives. Chem Rev 113(10):7981–8065CrossRefGoogle Scholar
  60. 60.
    Blanchard PE, Grosvenor AP, Cavell RG, Mar A (2008) X-ray photoelectron and absorption spectroscopy of metal-rich phosphides M2P and M3P (M= Cr-Ni). Chem Mater 20(22):7081–7088CrossRefGoogle Scholar
  61. 61.
    Jiao L, Zhou Y, Jiang H (2016) Metal-organic framework-based CoP/reduced graphene oxide: high-performance bifunctional electrocatalyst for overall water splitting. Chem Sci 7(3):1690–1695CrossRefGoogle Scholar
  62. 62.
    Tian J, Liu Q, Asiri AM, Sun X (2014) Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. J Am Chem Soc 136(21):7587–7590CrossRefGoogle Scholar
  63. 63.
    Ma L, Shen X, Zhou H, Zhu G, Ji Z, Chen K (2015) CoP nanoparticles deposited on reduced graphene oxide sheets as an active electrocatalyst for the hydrogen evolution reaction. J Mater Chem A 3(10):5337–5343CrossRefGoogle Scholar
  64. 64.
    Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1(1):37–46CrossRefGoogle Scholar
  65. 65.
    Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127(15):5308–5309CrossRefGoogle Scholar
  66. 66.
    Bi W, Zhang L, Sun Z, Li X, Jin T, Wu X, Zhang Q, Luo Y, Wu C, Xie Y (2016) Insight into electrocatalysts as co-catalysts in efficient photocatalytic hydrogen evolution. ACS Catal 6(7):4253–4257CrossRefGoogle Scholar
  67. 67.
    Xing M, Qiu B, Du M, Zhu Q, Wang L, Zhang J (2017) Spatially separated CdS shells exposed with reduction surfaces for enhancing photocatalytic hydrogen evolution. Adv Funct Mater 27(35):1702624CrossRefGoogle Scholar
  68. 68.
    Indra A, Acharjya A, Menezes PW, Merschjann C, Hollmann D, Schwarze M, Aktas M, Friedrich A, Lochbrunner S, Thomas A, Driess M (2017) Boosting visible-light-driven photocatalytic hydrogen evolution with an integrated nickel phosphide-carbon nitride system. Angew Chem Int Ed 56(6):1653–1657CrossRefGoogle Scholar
  69. 69.
    Choi J, Reddy DA, Han NS, Jeong S, Hong S, Kumar DP, Song JK, Kim TK (2017) Modulation of charge carrier pathways in CdS nanospheres by integrating MoS2 and Ni2P for improved migration and separation toward enhanced photocatalytic hydrogen evolution. Cat Sci Technol 7(3):641–649CrossRefGoogle Scholar
  70. 70.
    Ye L, Han C, Ma Z, Leng Y, Li J, Ji X, Bi D, Xie H, Huang Z (2017) Ni2P loading on Cd0.5Zn0.5S solid solution for exceptional photocatalytic nitrogen fixation under visible light. Chem Eng J 307:311–318CrossRefGoogle Scholar
  71. 71.
    Kudo A, Kato H, Tsuji I (2004) Strategies for the development of visible-light-driven photocatalysts for water splitting. Chem Lett 33(12):1534–1539CrossRefGoogle Scholar
  72. 72.
    Ye P, Liu X, Iocozzia J, Yuan Y, Gu L, Xu G, Lin Z (2017) Highly stable non-noble metal Ni2P co-catalyst for increased H2 generation by g-C3N4 under visible light irradiation. J Mater Chem A 5:8493–8498CrossRefGoogle Scholar
  73. 73.
    Qiu B, Zhu Q, Xing M, Zhang J (2017) A robust and efficient catalyst of CdxZn1−xSe motivated by CoP for photocatalytic hydrogen evolution under sunlight irradiation. Chem Commun 53(5):897–900CrossRefGoogle Scholar
  74. 74.
    Yue X, Yi S, Wang R, Zhang Z, Qiu S (2017) Cobalt phosphide modified titanium oxide nanophotocatalysts with significantly enhanced photocatalytic hydrogen evolution from water splitting. Small 13(14):1603301CrossRefGoogle Scholar
  75. 75.
    Tian J, Cheng N, Liu Q, Xing W, Sun X (2015) Cobalt phosphide nanowires: efficient nanostructures for fluorescence sensing of biomolecules and photocatalytic evolution of dihydrogen from water under visible light. Angew Chem Int Ed 54(18):5493–5497CrossRefGoogle Scholar
  76. 76.
    Sun Z, Yue Q, Li J, Xu J, Zheng H, Du P (2015) Copper phosphide modified cadmium sulfide nanorods as a novel p-n heterojunction for highly efficient visible-light-driven hydrogen production in water. J Mater Chem A 3(19):10243–10247CrossRefGoogle Scholar
  77. 77.
    Cheng H, Lv X, Cao S, Zhao Z, Chen Y, Fu W (2016) Robustly photogenerating H2 in water using FeP/CdS catalyst under solar irradiation. Sci Rep 6:19846–19855CrossRefGoogle Scholar
  78. 78.
    Yue Q, Wan Y, Sun Z, Wu X, Yuan Y, Du P (2015) MoP is a novel, noble-metal-free cocatalyst for enhanced photocatalytic hydrogen production from water under visible light. J Mater Chem A 3(33):16941–16947CrossRefGoogle Scholar
  79. 79.
    Yue X, Yi S, Wang R, Zhang Z, Qiu S (2016) A novel and highly efficient earth-abundant Cu3P with TiO2 “P-N” heterojunction nanophotocatalyst for hydrogen evolution from water. Nanoscale 8(40):17516–17523CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jinlong Zhang
    • 1
  • Baozhu Tian
    • 1
  • Lingzhi Wang
    • 1
  • Mingyang Xing
    • 1
  • Juying Lei
    • 1
  1. 1.Key Laboratory for Advanced Materials & Institute of Fine ChemicalsEast China University of Science & TechnologyShanghaiChina

Personalised recommendations