Photocatalysis pp 367-374 | Cite as

MoS2 Applications in Photo-Fenton Technology

  • Jinlong Zhang
  • Baozhu Tian
  • Lingzhi Wang
  • Mingyang Xing
  • Juying Lei
Part of the Lecture Notes in Chemistry book series (LNC, volume 100)


With the rapid economic development, environmental issues remain a nonnegligible problem among worldwide researchers. Among various handling strategies, advanced oxidation processes (AOPs) have been considerable methods to deal with the contaminant. In this chapter, we detailedly introduce the Fenton and Photo-Fenton technology, which belong to the AOPs. Besides that, we also present the Fenton-like process and transition metals as Fenton catalysts.


Advanced oxidation process Fenton process Transition metal Fenton reagents 


  1. 1.
    Malato S, Blanco J, Vidal A et al (2002) Photocatalysis with solar energy at a pilot-plant scale: an overview. Appl Catal B Environ 37(1):1–15CrossRefGoogle Scholar
  2. 2.
    Levec J, Pintar A (2007) Catalytic wet-air oxidation processes: a review. Catal Today 124(3):172–184CrossRefGoogle Scholar
  3. 3.
    Cybulski A (2007) Catalytic wet air oxidation: are monolithic catalysts and reactors feasible? Ind Eng Chem Res 46(12):4007–4033CrossRefGoogle Scholar
  4. 4.
    Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2(1):557–572CrossRefGoogle Scholar
  5. 5.
    Hoigné J (1997) Inter-calibration of OH radical sources and water quality parameters. Water Sci Technol 35(4):1–8CrossRefGoogle Scholar
  6. 6.
    Munter R (2001) Advanced oxidation processes-current status and prospects. Proc Estonian Acad Sci Chem 50(2):59–80Google Scholar
  7. 7.
    Rodrıguez M, Abderrazik NB, Contreras S et al (2002) Iron(III) photoxidation of organic compounds in aqueous solutions. Appl Catal B Environ 37(2):131–137CrossRefGoogle Scholar
  8. 8.
    Joseph JM, Varghese R, Aravindakumar CT (2001) Photoproduction of hydroxyl radicals from Fe (III)-hydroxy complex: a quantitative assessment. J Photochem Photobio A Chem 146(1):67–73CrossRefGoogle Scholar
  9. 9.
    Contreras S, Rodrıguez M, Chamarro E et al (2001) UV- and UV/Fe(III)-enhanced ozonation of nitrobenzene in aqueous solution. J Photochem Photobio A Chem 142(1):79–83CrossRefGoogle Scholar
  10. 10.
    Weast RC (1986) Handbook of physics and chemistry. CRC Press, Boca Raton, pp 1983–1984Google Scholar
  11. 11.
    Huang C, Dong C, Tang Z (1993) Advanced chemical oxidation: its present role and potential future in hazardous waste treatment. Waste Manag 13(5–7):361–377CrossRefGoogle Scholar
  12. 12.
    Sychev AY, Isak VG (1995) Iron compounds and the mechanisms of the homogeneous catalysis of the activation of O2 and H2O2 and of the oxidation of organic substrates. Russ Chem Rev 64(12):1105–1129CrossRefGoogle Scholar
  13. 13.
    Zepp RG, Faust BC, Hoigne J (1992) Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron (II) with hydrogen peroxide: the photo-Fenton reaction. Environ Sci Technol 26(2):313–319CrossRefGoogle Scholar
  14. 14.
    Kiwi J, Pulgarin C, Peringer P (1994) Effect of Fenton and photo-Fenton reactions on the degradation and biodegradability of 2 and 4-nitrophenols in water treatment. Appl Catal B Environ 3(4):335–350CrossRefGoogle Scholar
  15. 15.
    Chen R, Pignatello JJ (1997) Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds. Environ Sci Technol 31(8):2399–2406CrossRefGoogle Scholar
  16. 16.
    Maletzky P, Bauer R (1998) The Photo-Fenton method-degradation of nitrogen containing organic compounds. Chemosphere 37(5):899–909CrossRefGoogle Scholar
  17. 17.
    Nadtochenko V, Kiwi J (1996) Dynamics of light-induced excited state quenching of ferrioxalate complexes by peroxides. Fast kinetics events and interaction with toxic pollutants. J Photochem Photobiol A Chem 99(2):145–153CrossRefGoogle Scholar
  18. 18.
    Nadtochenko V, Kiwi J (1998) Primary photochemical reactions in the photo-Fenton system with ferric chloride. 1. A case study of xylidine oxidation as a model compound. Environ Sci Technol 32(21):3273–3281CrossRefGoogle Scholar
  19. 19.
    Chen F, Xie Y, He J et al (2001) Photo-Fenton degradation of dye in methanolic solution under both UV and visible irradiation. J Photochem Photobiol A Chem 138(2):139–146CrossRefGoogle Scholar
  20. 20.
    Tokumura M, Ohta A, Znad HT et al (2006) UV light assisted decolorization of dark brown colored coffee effluent by photo-Fenton reaction. Water Res 40(20):3775–3784CrossRefGoogle Scholar
  21. 21.
    Wu K, Xie Y, Zhao J et al (1999) Photo-Fenton degradation of a dye under visible light irradiation. J Mol Catal A Chem 144(1):77–84CrossRefGoogle Scholar
  22. 22.
    Ma J, Song W, Chen C et al (2005) Fenton degradation of organic compounds promoted by dyes under visible irradiation. Environ Sci Technol 39(15):5810–5815CrossRefGoogle Scholar
  23. 23.
    Bokare AD, Choi W (2014) Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J Hazard Mater 275:121–135CrossRefGoogle Scholar
  24. 24.
    Heckert EG, Seal S, Self WT (2008) Fenton-like reaction catalyzed by the rare earth inner transition metal cerium. Environ Sci Technol 42(13):5014–5019CrossRefGoogle Scholar
  25. 25.
    Salazar R, Brillas E, Sirés I (2012) Finding the best Fe2+/Cu2+ combination for the solar photoelectro-Fenton treatment of simulated wastewater containing the industrial textile dye Disperse Blue 3. Appl Catal B Environ 115-116:107–116CrossRefGoogle Scholar
  26. 26.
    Pagliaro M, Campestrini S, Ciriminna R (2005) Ru-based oxidation catalysis. Chem Soc Rev 34(10):837–845CrossRefGoogle Scholar
  27. 27.
    Radisavljevic B, Radenovic A, Brivio J et al (2011) Single-layer MoS2 transistors. Nat Nano 6(3):147–150CrossRefGoogle Scholar
  28. 28.
    Li Y, Wang H, Xie L et al (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133(19):7296–7299CrossRefGoogle Scholar
  29. 29.
    Li BL, Chen LX, Zou HL et al (2014) Electrochemically induced Fenton reaction of few-layer MoS2 nanosheets: preparation of luminescent quantum dots via a transition of nanoporous morphology. Nanoscale 6(16):9831–9838CrossRefGoogle Scholar
  30. 30.
    Yang X, Sun H, Zhang L et al (2016) High efficient photo-Fenton catalyst of α-Fe2O3/MoS2 hierarchical nanoheterostructures: reutilization for supercapacitors. Sci Rep 6:31591CrossRefGoogle Scholar
  31. 31.
    Herrmann JM, Tahiri H, Ait-Ichou Y et al (1997) Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz. Appl Catal B Environ 13(3):219–228CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jinlong Zhang
    • 1
  • Baozhu Tian
    • 1
  • Lingzhi Wang
    • 1
  • Mingyang Xing
    • 1
  • Juying Lei
    • 1
  1. 1.Key Laboratory for Advanced Materials & Institute of Fine ChemicalsEast China University of Science & TechnologyShanghaiChina

Personalised recommendations