Photocatalysis pp 345-366 | Cite as

Synthesis and Modifications of Mesoporous g-C3N4 Photocatalyst

  • Jinlong Zhang
  • Baozhu Tian
  • Lingzhi Wang
  • Mingyang Xing
  • Juying Lei
Part of the Lecture Notes in Chemistry book series (LNC, volume 100)


Due to the unique electronic structure and excellent chemical stability, graphitic carbon nitride (g-C3N4) polymeric semiconductor has attracted more and more widespread concern. Moreover, the raw materials for the synthesis of g-C3N4 are various and widely available. These advantages have altogether promoted the rapid development of g-C3N4. Compared with bulk g-C3N4, mesoporous g-C3N4 (MCN) possesses more prominent natures, such as large pore volume, high specific surface area, and the increased amount of surface-active sites. Therefore, great efforts have been devoted to developing MCN. Up to now, there have been many methods for the synthesis of MCN, such as soft-template methods, hard-template methods, template-free methods, sol–gel polymerization methods, and so on. In this chapter, the recent studies on the synthesis methods of MCN as well as the modifications of MCN were summarized. In addition, the future development of MCN was outlooked in the end.


Mesoporous g-C3N4 Synthesis Modification Photocatalyst 


  1. 1.
    Zhao Z, Sun Y, Dong F (2015) Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7(1):15–37CrossRefGoogle Scholar
  2. 2.
    Gu Y, Zhang Y, Chang X et al (2000) Synthesis and characterization of C3N4 hard films. Sci China Ser A Math 43(2):185CrossRefGoogle Scholar
  3. 3.
    Laribi M, Chenouf R, Bachari K et al (2013) Properties and reactivity of zinc-folded sheet mesoporous materials. Res Chem Intermed 39(4):1771–1780CrossRefGoogle Scholar
  4. 4.
    Yu W, Xu D, Peng T (2015) Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism. J Mater Chem A 3(39):19936–19947CrossRefGoogle Scholar
  5. 5.
    Lei J, Chen Y, Wang L et al (2015) Highly condensed g-C3N4-modified TiO2 catalysts with enhanced photodegradation performance toward acid orange 7. J Mater Sci 50(9):3467CrossRefGoogle Scholar
  6. 6.
    Lei J, Chen Y, Shen F et al (2015) Surface modification of TiO2 with g-C3N4 for enhanced UV and visible photocatalytic activity. J Alloys Compd 631:328–334CrossRefGoogle Scholar
  7. 7.
    Jin X, Balasubramanian VV, Selvan ST et al (2009) Highly ordered mesoporous carbon nitride nanoparticles with high nitrogen content: a metal-free basic catalyst. Angew Chem 121(42):8024–8027CrossRefGoogle Scholar
  8. 8.
    Li H, Zhou L, Wang L et al (2015) In situ growth of TiO2 nanocrystals on g-C3N4 for enhanced photocatalytic performance. Phys Chem Chem Phys 17(26):17406–17412CrossRefGoogle Scholar
  9. 9.
    Cui Y, Zhang J, Zhang G et al (2011) Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution. J Mater Chem 21(34):13032–13039CrossRefGoogle Scholar
  10. 10.
    Wixom MR (1990) Chemical preparation and shock wave compression of carbon nitride precursors. J Am Ceram Soc 73(7):1973–1978CrossRefGoogle Scholar
  11. 11.
    Liu J, Sekine T, Kobayashi T (2006) A new carbon nitride synthesized by shock compression of organic precursors. Solid State Commun 137(1):21–25CrossRefGoogle Scholar
  12. 12.
    Ma HA, Jia XP, Chen LX et al (2002) High-pressure pyrolysis study of C3N6H6: a route to preparing bulk C3N4. J Phys Condens Matter 14(44):11269CrossRefGoogle Scholar
  13. 13.
    Galan L, Montero I, Rueda F (1996) An X-ray photoelectron spectroscopy study of carbon nitride films grown by low energy ion implantation. Surf Coat Technol 83(1–3):103–108CrossRefGoogle Scholar
  14. 14.
    Hoffman A, Gouzman I, Brener R (1994) Possibility of carbon nitride formation by low-energy nitrogen implantation into graphite: in situ electron spectroscopy studies. Appl Phys Lett 64(7):845–847CrossRefGoogle Scholar
  15. 15.
    Hofsäss H, Ronning C, Griesmeier U et al (1995) Cubic boron nitride films grown by low energy B+ and N+ ion beam deposition. Appl Phys Lett 67(1):46–48CrossRefGoogle Scholar
  16. 16.
    Song HW, Cui FZ, He XM et al (1994) Carbon nitride films synthesized by NH3-ion-beam-assisted deposition. J Phys Condens Matter 6(31):6125CrossRefGoogle Scholar
  17. 17.
    Zhou ZF, Bello I, Lei MK et al (2000) Synthesis and characterization of boron carbon nitride films by radio frequency magnetron sputtering. Surf Coat Technol 128:334–340CrossRefGoogle Scholar
  18. 18.
    Yen TY, Chou CP (1995) Growth and characterization of carbon nitride thin films prepared by arc-plasma jet chemical vapor deposition. Appl Phys Lett 67(19):2801–2803CrossRefGoogle Scholar
  19. 19.
    Bousetta A, Lu M, Bensaoula A et al (1994) Formation of carbon nitride films on Si (100) substrates by electron cyclotron resonance plasma assisted vapor deposition. Appl Phys Lett 65(6):696–698CrossRefGoogle Scholar
  20. 20.
    Geretovszky Z, Kántor Z, Bertóti I (2000) Pulsed laser deposition of carbon nitride films by a sub-ps laser. Appl Phys A 70(1):9CrossRefGoogle Scholar
  21. 21.
    Mihailescu IN, Gyorgy E, Alexandrescu R et al (1998) Optical studies of carbon nitride thin films deposited by reactive pulsed laser ablation of a graphite target in low pressure ammonia. Thin Solid Films 323(1):72–78CrossRefGoogle Scholar
  22. 22.
    Jabbari A, Mahdavi H, Nikoorazm M et al (2015) Salen copper (II) complex heterogenized on mesoporous MCM-41 as nano-reactor catalyst for the selective oxidation of sulfides using urea hydrogen peroxide (UHP). Res Chem Intermed 41(8):5649–5663CrossRefGoogle Scholar
  23. 23.
    Lei J, Yang L, Lu D et al (2015) Carbon Dot-incorporated PMO nanoparticles as versatile platforms for the design of ratiometric sensors, multichannel traceable drug delivery vehicles, and efficient photocatalysts. Adv Opt Mater 3(1):57CrossRefGoogle Scholar
  24. 24.
    Hu J, Zou Y, Liu J et al (2015) Immobilization of Cu-chelate onto SBA-15 for partial oxidation of benzyl alcohol using water as the solvent. Res Chem Intermed 41(8):5703–5712CrossRefGoogle Scholar
  25. 25.
    Shen W, Ren L, Zhou H et al (2011) Facile one-pot synthesis of bimodal mesoporous carbon nitride and its function as a lipase immobilization support. J Mater Chem 21(11):3890–3894CrossRefGoogle Scholar
  26. 26.
    Fellinger T-P, Hasché F, Strasser P et al (2012) Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J Am Chem Soc 134(9):4072CrossRefGoogle Scholar
  27. 27.
    Thomas A, Fischer A, Goettmann F et al (2008) Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J Mater Chem 18(41):4893–4908CrossRefGoogle Scholar
  28. 28.
    Kuhn P, Antonietti M, Thomas A (2008) Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew Chem Int Ed 47(18):3450–3453CrossRefGoogle Scholar
  29. 29.
    Yan H (2012) Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light. Chem Commun 48(28):3430–3432CrossRefGoogle Scholar
  30. 30.
    Wang Y, Zhang J, Wang X et al (2010) Boron-and fluorine-containing mesoporous carbon nitride polymers: metal-free catalysts for cyclohexane oxidation. Angew Chem Int Ed 49(19):3356–3359CrossRefGoogle Scholar
  31. 31.
    Hartmann M, Vinu A (2002) Mechanical stability and porosity analysis of large-pore SBA-15 mesoporous molecular sieves by mercury porosimetry and organics adsorption. Langmuir 18(21):8010–8016CrossRefGoogle Scholar
  32. 32.
    Vinu A, Ariga K, Mori T et al (2005) Preparation and characterization of well-ordered hexagonal mesoporous carbon nitride. Adv Mater 17(13):1648–1652CrossRefGoogle Scholar
  33. 33.
    Zhao Z, Dai Y, Lin J et al (2014) Highly-ordered mesoporous carbon nitride with ultrahigh surface area and pore volume as a superior dehydrogenation catalyst. Chem Mater 26(10):3151–3161CrossRefGoogle Scholar
  34. 34.
    Vinu A (2008) Two-dimensional hexagonally-ordered mesoporous carbon nitrides with tunable pore diameter, surface area and nitrogen content. Adv Funct Mater 18(5):816–827CrossRefGoogle Scholar
  35. 35.
    Lakhi KS, Cha WS, Joseph S et al (2015) Cage type mesoporous carbon nitride with large mesopores for CO2 capture. Catal Today 243:209–217CrossRefGoogle Scholar
  36. 36.
    Ansari MB, Jin H, Parvin MN et al (2012) Mesoporous carbon nitride as a metal-free base catalyst in the microwave assisted Knoevenagel condensation of ethylcyanoacetate with aromatic aldehydes. Catal Today 185(1):211–216CrossRefGoogle Scholar
  37. 37.
    Mane GP, Dhawale DS, Anand C et al (2013) Selective sensing performance of mesoporous carbon nitride with a highly ordered porous structure prepared from 3-amino-1, 2, 4-triazine. J Mater Chem A 1(8):2913–2920CrossRefGoogle Scholar
  38. 38.
    Talapaneni SN, Anandan S, Mane GP et al (2012) Facile synthesis and basic catalytic application of 3D mesoporous carbon nitride with a controllable bimodal distribution. J Mater Chem 22(19):9831–9840CrossRefGoogle Scholar
  39. 39.
    Min S, Lu G (2012) Enhanced electron transfer from the excited eosin Y to mpg-C3N4 for highly efficient hydrogen evolution under 550 nm irradiation. J Phys Chem C 116(37):19644–19652CrossRefGoogle Scholar
  40. 40.
    Kumar S, Baruah A, Tonda S et al (2014) Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/g-C3N4 core–shell nanoplates with excellent visible-light responsive photocatalysis. Nanoscale 6(9):4830–4842CrossRefGoogle Scholar
  41. 41.
    Shi L, Liang L, Wang F et al (2015) Tetraethylorthosilicate induced preparation of mesoporous graphitic carbon nitride with improved visible light photocatalytic activity. Catal Commun 59:131–135CrossRefGoogle Scholar
  42. 42.
    Kailasam K, Epping JD, Thomas A et al (2011) Mesoporous carbon nitride–silica composites by a combined sol–gel/thermal condensation approach and their application as photocatalysts. Energy Environ Sci 4(11):4668–4674CrossRefGoogle Scholar
  43. 43.
    Yang S, Zhou W, Ge C et al (2013) Mesoporous polymeric semiconductor materials of graphitic-C3N4: general and efficient synthesis and their integration with synergistic AgBr NPs for enhanced photocatalytic performances. RSC Adv 3(16):5631–5638CrossRefGoogle Scholar
  44. 44.
    Cui Y, Huang J, Fu X et al (2012) Metal-free photocatalytic degradation of 4-chlorophenol in water by mesoporous carbon nitride semiconductors. Cat Sci Technol 2(7):1396–1402CrossRefGoogle Scholar
  45. 45.
    Shiraishi Y, Kofuji Y, Sakamoto H et al (2015) Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation. ACS Catal 5(5):3058–3066CrossRefGoogle Scholar
  46. 46.
    Yang Q, Wang W, Zhao Y et al (2015) Metal-free mesoporous carbon nitride catalyze the Friedel–Crafts reaction by activation of benzene. RSC Adv 5(68):54978CrossRefGoogle Scholar
  47. 47.
    Datta KKR, Reddy BV, Ariga K et al (2010) Gold nanoparticles embedded in a mesoporous carbon nitride stabilizer for highly efficient three-component coupling reaction. Angew Chem Int Ed 49(34):5961–5965CrossRefGoogle Scholar
  48. 48.
    Wang Y, Yao J, Li H et al (2011) Highly selective hydrogenation of phenol and derivatives over a Pd@ carbon nitride catalyst in aqueous media. J Am Chem Soc 133(8):2362–2365CrossRefGoogle Scholar
  49. 49.
    Wang FF, Shao S, Liu CL et al (2015) Selective oxidation of glycerol over Pt supported on mesoporous carbon nitride in base-free aqueous solution. Chem Eng J 264:336–343CrossRefGoogle Scholar
  50. 50.
    Lu Y, Wen Z, Jin J et al (2012) Mesoporous carbon nitride loaded with Pt nanoparticles as a bifunctional air electrode for rechargeable lithium-air battery. J Solid State Electrochem 16(5):1863CrossRefGoogle Scholar
  51. 51.
    Xu J, Jiang Q, Chen T et al (2015) Vanadia supported on mesoporous carbon nitride as a highly efficient catalyst for hydroxylation of benzene to phenol. Cat Sci Technol 5(3):1504–1513CrossRefGoogle Scholar
  52. 52.
    Kailasam K, Fischer A, Zhang G et al (2015) Mesoporous carbon nitride-tungsten oxide composites for enhanced photocatalytic hydrogen evolution. ChemSusChem 8(8):1404–1410CrossRefGoogle Scholar
  53. 53.
    Wang Y, Wang X, Antonietti M (2012) Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Edit 51(1):68CrossRefGoogle Scholar
  54. 54.
    Shalom M, Inal S, Fettkenhauer C et al (2013) Improving carbon nitride photocatalysis by supramolecular preorganization of monomers. J Am Chem Soc 135(19):7118–7121CrossRefGoogle Scholar
  55. 55.
    Wei J (2002) Formation of hydrogenated carbon nitride films by reactive sputtering. J Appl Phys 92(11):6525CrossRefGoogle Scholar
  56. 56.
    Najafian A, Rahimi R, Zargari S et al (2016) Synthesis and photocatalytic activity of V-doped mesoporous TiO2 photosensitized with porphyrin supported by SBA-15. Res Chem Intermed 42(4):3441–3458CrossRefGoogle Scholar
  57. 57.
    Takanabe K, Kamata K, Wang X et al (2010) Photocatalytic hydrogen evolution on dye-sensitized mesoporous carbon nitride photocatalyst with magnesium phthalocyanine. Phys Chem Chem Phys 12(40):13020–13025CrossRefGoogle Scholar
  58. 58.
    Maleki B, Eshghi H, Barghamadi M et al (2016) Silica-coated magnetic NiFe2O4 nanoparticles-supported H3PW12O40; synthesis, preparation, and application as an efficient, magnetic, green catalyst for one-pot synthesis of tetrahydrobenzo[b]pyran and pyrano[2,3-c]pyrazole derivatives. Res Chem Intermed 42(4):3071CrossRefGoogle Scholar
  59. 59.
    Wu J, Liao L, Yan W et al (2012) Polyoxometalates immobilized in ordered mesoporous carbon nitride as highly efficient water oxidation catalysts. ChemSusChem 5(7):1207–1212CrossRefGoogle Scholar
  60. 60.
    Zhu Y, Zhu M, Kang L et al (2015) Phosphotungstic acid supported on mesoporous graphitic carbon nitride as catalyst for oxidative desulfurization of fuel. Ind Eng Chem Res 54(7):2040–2047CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jinlong Zhang
    • 1
  • Baozhu Tian
    • 1
  • Lingzhi Wang
    • 1
  • Mingyang Xing
    • 1
  • Juying Lei
    • 1
  1. 1.Key Laboratory for Advanced Materials & Institute of Fine ChemicalsEast China University of Science & TechnologyShanghaiChina

Personalised recommendations