Photocatalysis pp 307-343 | Cite as

Syntheses and Applications of Silver Halide-Based Photocatalysts

  • Jinlong Zhang
  • Baozhu Tian
  • Lingzhi Wang
  • Mingyang Xing
  • Juying Lei
Part of the Lecture Notes in Chemistry book series (LNC, volume 100)


With the growing crisis in energy and environment, photocatalysis has been paid increasing attention for its potential to solve these problems. Recently, silver halide (AgX), a well-known photographic material, has been developed as a kind of visible light-driven photocatalyst with excellent activity and high efficiency in splitting water, degrading environmental contaminants, and inactivating pathogenic bacteria. Based on a large number of researches, it was found that the activity and efficiency of AgX can be largely enhanced by morphology control, semiconductor composite establishment, and substrate load. In this chapter, we firstly introduced the properties and synthesis strategies of AgX materials. Then, we summarized the preparation, characterization, and applications of AgX with different morphologies. After that, the AgX-based heterojunction and Z-scheme structures were detailedly discussed on the basis of different composites and band structure. Finally, we introduced the present researches of recoverable AgX materials.


Silver halide Heterojunction structure Z-scheme structure Surface plasmon resonance Photocatalytic activity 


  1. 1.
    Qiu B-C, Zhu Q-H, Xing M-Y, Zhang J-L (2017) A robust and efficient catalyst of CdxZn1−xSe motivated by CoP for photocatalytic hydrogen evolution under sunlight irradiation. Chem Commun 53:897–900CrossRefGoogle Scholar
  2. 2.
    Qiu B-C, Zhu Q-H, Du M-M, Fan L-G, Xing M-Y, Zhang J-L (2017) Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-scheme photocatalytic water splitting. Angew Chem 129:2728–2732CrossRefGoogle Scholar
  3. 3.
    Wu Q-F, Bao S-Y, Tian B-Z, Xiao Y-F, Zhang J-L (2016) Double-diffusion-based synthesis of BiVO4 mesoporous single crystals with enhanced photocatalytic activity for oxygen evolution. Chem Commun 52:7478–7481CrossRefGoogle Scholar
  4. 4.
    Xing M-Y, Zhang J-L, Chen F, Tian B-Z (2011) An economic method to prepare vacuum activated photocatalysts with high photo-activities and photosensitivities. Chem Commun 47:4947–4949CrossRefGoogle Scholar
  5. 5.
    Du J, Du Z-L, Hu J-S, Pan Z-X, Shen Q, Sun J-K, Long D-H, Dong H, Sun L-T, Zhong X-H, Wan L-J (2016) Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11.6%. J Am Chem Soc 138:4201–4209PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Zhao K, Pan Z-X, Mora-Seró I, Wang H, Song Y, Gong X-Q, Wang J, Bonn M, Bisquert J, Zhong X-H (2015) Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control. J Am Chem Soc 137:5602–5609PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Ali M, Zhou F-L, Chen K, Kotzur C, Xiao C-L, Bourgeois L, Zhang X-Y, MacFarlane D-R (2016) Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nat Commun 11335:1–5Google Scholar
  8. 8.
    Li Q-Y, Guan Z-P, Wu D, Zhao X-G, Bao S-Y, Tian B-Z, Zhang J-L (2017) Z-Scheme BiOCl-Au-CdS heterostructure with enhanced sunlight-driven photocatalytic activity in degrading water dyes and antibiotics. ACS Sustain Chem Eng 5:6958–6968CrossRefGoogle Scholar
  9. 9.
    Li Q-Y, Li T-Y, Chang S-Z, Tao Q-S, Tian B-Z, Zhang J-L (2016) Enlarging {110} exposed facets of anatase TiO2 by the synergistic action of capping agents. CrystEngComm 18:5074–5078CrossRefGoogle Scholar
  10. 10.
    Li T-Y, Tian B-Z, Zhang J-L, Dong R-F, Wang T-T, Yang F (2013) Facile tailoring of anatase TiO2 morphology by use of H2O2: from microflowers with dominant {101} facets to microspheres with exposed {001} facets. Ind Eng Chem Res 52(20):6704–6712CrossRefGoogle Scholar
  11. 11.
    Weon S-H, Choi J-M, Park T-H, Choi W-Y (2017) Freestanding doubly open-ended TiO2 nanotubes for efficient photocatalytic degradation of volatile organic compounds. Appl Catal B 205:386–392CrossRefGoogle Scholar
  12. 12.
    Ren L, Li Y-Z, Hou J-T, Bai J-L, Mao M-Y, Zeng M, Zhao X-J, Li N (2016) The pivotal effect of the interaction between reactant and anatase TiO2 nanosheets with exposed {001} facets on photocatalysis for the photocatalytic purification of VOCs. Appl Catal B 181:625–634CrossRefGoogle Scholar
  13. 13.
    Wu D, Yue S-T, Wang W, An T-C, Li G-Y, Yip H-Y, Zhao H-J, Wong P-K (2016) Boron doped BiOBr nanosheets with enhanced photocatalytic inactivation of Escherichia coli. Appl Catal B 192:35–45CrossRefGoogle Scholar
  14. 14.
    Wang W-J, An T-C, Li G-Y, Xia D-H, Zhao H-J, Yu J-C, Wong P-K (2017) Earth-abundant Ni2P/g-C3N4 lamellar nanohydrids for enhanced photocatalytic hydrogen evolution and bacterial inactivation under visible light irradiation. Appl Catal B 217:570–580CrossRefGoogle Scholar
  15. 15.
    Rtimi S, Giannakis S, Sanjines R, Pulgarin C, Bensimon M, Kiwi J (2016) Insight on the photocatalytic bacterial inactivation by co-sputtered TiO2-Cu in aerobic and anaerobic conditions. Appl Catal B 182:277–285CrossRefGoogle Scholar
  16. 16.
    Kuehnel M-F, Orchard K-L, Dalle K-E, Reisner E (2017) Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. J Am Chem Soc 139:7217–7223PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Takeda H, Ohashi K, Sekine A, Ishitani O (2016) Photocatalytic CO2 reduction using Cu(I) photosensitizers with a Fe(II) catalyst. J Am Chem Soc 138:4354–4357PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Dong C-Y, Xing M-Y, Zhang J-L (2016) Double-cocatalysts promote charge separation efficiency in CO2 photoreduction: spatial location matters. Mater Horiz 3:608–612CrossRefGoogle Scholar
  19. 19.
    Dong C-Y, Xing M-Y, Zhang J-L (2016) Economic hydrophobicity triggering of CO2 photoreduction for selective CH4 generation on noble-metal-free TiO2–SiO2. J Phys Chem Lett 7:2962–2966PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Fang W-Z, Dappozze F, Guillard C, Zhou Y, Xing M-Y, Mishra S, Daniele S, Zhang J-L (2017) Zn-assisted TiO2–x photocatalyst with efficient charge separation for enhanced photocatalytic activities. J Phys Chem C 121:17068–17076CrossRefGoogle Scholar
  21. 21.
    Schneider J, Matsuoka M, Takeuchi M, Zhang J-L, Horiuchi Y, Anpo M, Bahnemann D-W (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Qiu B-C, Xing M-Y, Zhang J-L (2014) Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J Am Chem Soc 136:5852–5855PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Qi D-Y, Lu L-J, Wang L-Z, Zhang J-L (2014) Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling. J Am Chem Soc 136:9886–9889PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Li X, Liu P-W, Mao Y, Xing M-Y, Zhang J-L (2015) Preparation of homogeneous nitrogen-doped mesoporous TiO2 spheres with enhanced visible-light photocatalysis. Appl Catal B 164:352–359CrossRefGoogle Scholar
  25. 25.
    Tani T (1995) Photographic sensitivity theory and mechanisms. Oxford University Press, New YorkGoogle Scholar
  26. 26.
    Tian B-Z, Zhang J-L (2012) Morphology-controlled synthesis and applications of silver halide photocatalytic materials. Catal Surv Jpn 16:210–230CrossRefGoogle Scholar
  27. 27.
    Tani T (2011) Photographic sensitivity advances in nanoparticles, J-aggregates, dye sensitization, and organic devices. Oxford University Press, Oxford/New YorkCrossRefGoogle Scholar
  28. 28.
    Cox R-J (1973) Photographic sensitivity. Academic Press Inc (London) LT, LondonGoogle Scholar
  29. 29.
    Kakuta N, Goto N, Ohkita H, Mizushima T (1999) Silver bromide as a photocatalyst for hydrogen generation from CH3OH/H2O solution. J Phys Chem B 103:5917–5919CrossRefGoogle Scholar
  30. 30.
    Schürch D, Currao A, Sarkar S, Hodes G, Calzaferri G (2002) The silver chloride photoanode in photoelectrochemical water splitting. J Phys Chem B 106:12764–12775CrossRefGoogle Scholar
  31. 31.
    Pfanner K, Gfeller N, Calzaferri G (1996) Photochemical oxidation of water with thin AgCl layers. J Photochem Photobiol A 95:175–180CrossRefGoogle Scholar
  32. 32.
    Hu C, Lan Y-Q, Qu J-H, Hu X-X, Wang A-M (2006) Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J Phys Chem B 110:4066–4072PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Wang P, Huang B-B, Qin X-Y, Zhang X-Y, Dai Y, Wei J-Y, Whangbo M-H (2008) Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew Chem Int Ed 47:7931–7933CrossRefGoogle Scholar
  34. 34.
  35. 35.
    Tian B-Z, Dong R-F, Zhang J-M, Bao S-Y, Yang F, Zhang J-L (2014) Sandwich-structured AgCl@Ag@TiO2 with excellent visible-light photocatalytic activity for organic pollution degradation and E. coli K12 inactivation. Appl Catal B 158−159:76–84CrossRefGoogle Scholar
  36. 36.
    Bao S-Y, Wang Z-Q, Gong X-Q, Zeng C-Y, Wu Q-F, Tian B-Z, Zhang J-L (2016) AgBr tetradecahedrons with co-exposed {100} and {111} facets: simple fabrication and enhancing spatial charge separation using facet heterojunction. J Mater Chem A 4:18570–18577CrossRefGoogle Scholar
  37. 37.
    Lin H-L, Cao J, Luo B-D, Xu B-Y, Chen S-F (2012) Synthesis of novel Z-scheme AgI/Ag/AgBr composite with enhanced visible light photocatalytic activity. Catal Commun 21:91–95CrossRefGoogle Scholar
  38. 38.
    Tao Q-S, Yang F, Teng F, Wu P-Y, Tian B-Z, Zhang J-L (2015) Study of the factors influencing the photo-stability of Ag@AgBr plasmonic photocatalyst. Res Chem Intermed 41:7285–7297CrossRefGoogle Scholar
  39. 39.
    Zeng C-Y, Guo M, Tian B-Z, Zhang J-L (2013) Reduced graphene oxide modified Ag/AgBr with enhanced visible light photocatalytic activity for methyl orange degradation. Chem Phys Lett 575:81–85CrossRefGoogle Scholar
  40. 40.
    Zhu J, Li C-J, Teng F, Tian B-Z, Zhang J-L (2015) Recyclable Ag@AgBr-gelatin film with superior visible-light photocatalytic activity for organic degradation. Res Chem Intermed 41:9715–9730CrossRefGoogle Scholar
  41. 41.
    Dong R-F, Tian B-Z, Zeng C-Y, Li T-Y, Wang T-T, Zhang J-L (2013) Ecofriendly synthesis and photocatalytic activity of uniform cubic Ag@AgCl plasmonic photocatayst. J Phys Chem C 117:213–220CrossRefGoogle Scholar
  42. 42.
    Zeng C-Y, Tian B-Z, Zhang J-L (2013) Silver halide/silver iodide@silver composite with excellent visible light photocatalytic activity for methyl orange degradation. J Colloid Interface Sci 405:17–21PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Dong R-F, Tian B-Z, Zhang J-L, Wang T-T, Tao Q-S, Bao S-Y, Yang F, Zeng C-Y (2013) AgBr@Ag/TiO2 core-shell composite with excellent visible light photocatalytic activity and hydrothermal stability. Catal Commun 38:16–20CrossRefGoogle Scholar
  44. 44.
    Zhang P, Wu P-Y, Bao S-Y, Wang Z, Tian B-Z, Zhang J-L (2016) Synthesis of sandwich-structured AgBr@Ag@TiO2 composite photocatalyst and study of its photocatalytic performance for the oxidation of benzyl alcohols to benzaldehydes. Chem Eng J 306:1151–1161CrossRefGoogle Scholar
  45. 45.
    Yang F, Tian B-Z, Zhang J-L, Xiong T-Q, Wang T-T (2014) Preparation, characterization, and photocatalytic activity of porous AgBr@Ag and AgBrI@Ag plasmonic photocatalysts. Appl Surf Sci 292:256–261CrossRefGoogle Scholar
  46. 46.
    Bi Y-P, Ye J-H (2010) Direct conversion of commercial silver foils into high aspect ratio AgBr nanowires with enhanced photocatalytic properties. Chem Eur J 16:10327–10331PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Cao Q, Liu X, Yuan K-P, Yu J, Liu Q-H, Delaunay J-J, Che R (2017) Gold nanoparticled decorated Ag(Cl, Br) micro-necklaces for efficient and stable SERS detection and visible-light photocatalytic degradation of Sudan I. Appl Catal B 201:607–616CrossRefGoogle Scholar
  48. 48.
    Bi Y-P, Ye J-H (2009) In situ oxidation synthesis of Ag/AgCl core-shell nanowires and their photocatalytic properties. Chem Commun 43:6551–6553CrossRefGoogle Scholar
  49. 49.
    Bi Y-P, Ye J-H (2010) Heteroepitaxial growth of platinum nanocrystals on AgCl nanotubes via galvanic replacement reaction. Chem Commun 46:1532–1534CrossRefGoogle Scholar
  50. 50.
    Jia C-C, Yang P, Huang B-B (2014) Uniform Ag/AgCl necklace-like nano-heterostructures: fabrication and highly efficient plasmonic photocatalysis. ChemCatChem 6:611–617CrossRefGoogle Scholar
  51. 51.
    Ge J, Wang X, Yao H-B, Zhu H-W, Peng Y-C, Yu S-H (2015) Durable Ag/AgCl nanowires assembled in a sponge for continuous water purification under sunlight. Mater Horiz 2:509–513CrossRefGoogle Scholar
  52. 52.
    Sun Y-G (2010) Conversion of Ag nanowires to AgCl nanowires decorated with Au nanoparticles and their photocatalytic activity. J Phys Chem C 114:2127–2133CrossRefGoogle Scholar
  53. 53.
    Zhu M-S, Chen P-L, Liu M-H (2012) Highly efficient visible-light-driven plasmonic photocatalysts based on graphene oxide-hybridized one-dimensional Ag/AgCl heteroarchitectures. J Mater Chem 22:21487–21494CrossRefGoogle Scholar
  54. 54.
    Sun L, Zhang R-Z, Wang Y, Chen W (2014) Plasmonic Ag@AgCl nanotubes fabricated from copper nanowires as high-performance visible light photocatalyst. ACS Appl Mater Interfaces 6:14819–14826PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Li B, Wang H, Zhang B-W, Hu P-F, Chen C, Guo L (2013) Facile synthesis of one dimensional AgBr@Ag nanostructures and their visible light photocatalytic properties. ACS Appl Mater Interfaces 5:12283–12287PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Chen D-L, Liu M-N, Chen Q-Q, Ge L-F, Fan B-B, Wang H-L, Lu H-X, Yang D-Y, Zhang R, Yan Q-S, Shao G-S, Sun J, Gao L (2014) Large-scale synthesis and enhanced visible-light-driven photocatalytic performance of hierarchical Ag/AgCl nanocrystals derived from freeze-dried PVP-Ag+ hybrid precursors with porosity. Appl Catal B 144:394–407CrossRefGoogle Scholar
  57. 57.
    Ai L-H, Zhang C-H, Jiang J (2013) Hierarchical porous AgCl@Ag hollow architectures: self-templating synthesis and highly enhanced visible light photocatalytic activity. Appl Catal B 142−143:744–751CrossRefGoogle Scholar
  58. 58.
    Tang Y-X, Jiang Z-L, Xing G-C, Li A-R, Kanhere P-D, Zhang Y-Y, Sum T-C, Li S-Z, Chen X-D, Dong Z-L, Chen Z (2013) Efficient Ag@AgCl cubic cage photocatalysts profitfrom ultrafast plasmon-induced electron transfer processes. Adv Funct Mater 23:2932–2940CrossRefGoogle Scholar
  59. 59.
    Li H-Y, Wu T-S, Cai B, Ma W-G, Sun Y-J, Gan S-Y, Han D-X, Niu L (2015) Efficiently photocatalytic reduction of carcinogenic contaminant Cr(VI) upon robust AgCl:Ag hollow nanocrystals. Appl Catal B 164:344–351CrossRefGoogle Scholar
  60. 60.
    Han C-C, Ge L, Chen C-F, Li Y-J, Zhao Z, Xiao X-L, Li Z-L, Zhang J-L (2014) Site-selected synthesis of novel Ag@AgCl nanoframes with efficient visible light induced photocatalytic activity. J Mater Chem A 2:12594–12600CrossRefGoogle Scholar
  61. 61.
    Xiao X-L, Ge L, Han C-C, Li Y-J, Zhao Z, Xin Y-J, Fang S-M, Wu L-N, Qiu P (2015) A facile way to synthesize Ag@AgBr cubic cages with efficient visible-light-induced photocatalytic activity. Appl Catal B 163:64–572CrossRefGoogle Scholar
  62. 62.
    Lou S-Y, Jia X-B, Wang Y-Q, Zhou S-M (2015) Template-assisted in-situ synthesis of porous AgBr/Ag composite microspheres as highly efficient visible-light photocatalyst. Appl Catal B 176–177:586–593CrossRefGoogle Scholar
  63. 63.
    Kim J-W, Agesen L-K, Choi J-H, Choi J, Kim H-S, Liu J-Y, Cho C-R, Kang J-G, Ramazane A, Thornton K, Braun P-V (2015) Template-directed directionally solidified 3D mesostructured AgCl–KCl eutectic photonic crystals. Adv Mater 27:4551–4559PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Wu S-K, Shen X-P, Ji Z-Y, Zhu G-X, Chen C-J, Chen K-M, Bu R, Yang L-M (2015) Synthesis of AgCl hollow cubes and their application in photocatalytic degradation of organic pollutants. CrystEngComm 17:2517–2522CrossRefGoogle Scholar
  65. 65.
    Zhu M-S, Chen P-L, Liu M-H (2013) High-performance visible-light-driven plasmonic photocatalysts Ag/AgCl with controlled size and shape using graphene oxide as capping agent and catalyst promoter. Langmuir 29:9259–9268PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Shahzad A, Kim W-S, Yu T (2016) A facile synthesis of Ag/AgCl hybrid nanostructures with tunable morphologies and compositions as advanced visible light plasmonic photocatalysts. Dalton Trans 45:9158–9165PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Wang H, Li Y, Li C, He L, Guo L (2012) Facile synthesis of AgBr nanocubes for highly efficient visible light photocatalysts. CrystEngComm 14:7563–7566CrossRefGoogle Scholar
  68. 68.
    An C-H, Peng S, Sun Y-G (2010) Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst. Adv Mater 22:2570–2574PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Zhu M-S, Chen P-L, Ma W-H, Lei B, Liu M-H (2012) Template-free synthesis of cube-like Ag/AgCl nanostructures via a direct-precipitation protocol: highly efficient sunlight-driven plasmonic photocatalysts. ACS Appl Mater Interfaces 4:6386–6392PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Han L, Wang P, Zhu C-Z, Zhai Y-M, Dong S-J (2011) Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst. Nanoscale 3:2931–2935PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Chen D-L, Yoo S-H, Huang Q-S, Ali G, Cho S-O (2012) Sonochemical synthesis of Ag/AgCl nanocubes and their efficient visible-light-driven photocatalytic performance. Chem Eur J 18:5192–5200PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Wang H, Gao J, Guo T-Q, Wang R-M, Guo L, Liu Y, Li J-L (2012) Facile synthesis of AgBr nanoplates with exposed {111} facets and enhanced photocatalytic properties. Chem Commun 48:275–277CrossRefGoogle Scholar
  73. 73.
    Shen Y-F, Chen P-L, Xiao D, Chen C-C, Zhu M-S, Li T-S, Ma W-G, Liu M-H (2015) Spherical and sheetlike Ag/AgCl nanostructures: interesting photocatalysts with unusual facet-dependent yet substrate-sensitive reactivity. Langmuir 31:602–610PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Lou Z-Z, Huang B-B, Qin X-Y, Zhang X-Y, Wang Z-Y, Zheng Z-K, Cheng H-F, Wang P, Dai Y (2011) One-step synthesis of AgBr microcrystals with different morphologies by ILs-assisted hydrothermal method. CrystEngComm 13:1789–1793CrossRefGoogle Scholar
  75. 75.
    Zhang H-B, Lu Y-G, Liu H, Fang J-Z (2015) One-pot synthesis of high-index faceted AgCl nanocrystals with trapezohedral, concave hexoctahedral structures and their photocatalytic activity. Nanoscale 7:11591–11601PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Moniz S-J-A, Shevlin S-A, Martin D-J, Guo Z-X, Tang J-W (2015) Visible-light driven heterojunction photocatalysts for water splitting-a critical review. Energy Environ Sci 8:731–759CrossRefGoogle Scholar
  77. 77.
    Cheng H-F, Wang W-J, Huang B-B, Wang Z-Y, Zhan J, Qin X-Y, Zhang X-Y, Dai Y (2013) Tailoring AgI nanoparticles for the assembly of AgI/BiOI hierarchical hybrids with size-dependent photocatalytic activities. J Mater Chem A 1:7131–7136CrossRefGoogle Scholar
  78. 78.
    Chen L-L, Jiang D-L, He T, Wu Z-D, Chen M (2013) In-situ ion exchange synthesis of hierarchical AgI/BiOI microsphere photocatalyst with enhanced photocatalytic properties. CrystEngComm 15:7556–7563CrossRefGoogle Scholar
  79. 79.
    An C-H, Jiang W, Wang J-Z, Wang S-T, Ma Z-Z, Li Y-P (2013) Synthesis of three-dimensional AgI@TiO2 nanoparticles with improved photocatalytic performance. Dalton Trans 42:8796–8801PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Wu D-Y, Long M-C (2011) Realizing visible-light-induced self-cleaning property of cotton through coating N-TiO2 film and loading AgI particles. ACS Appl Mater Interfaces 3:4770–4774PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Song J-M, Zhang J, Ni J-J, Niu H-L, Mao C-J, Zhang S-Y, Shen Y-H (2014) One-pot synthesis of ZnO decorated with AgBr nanoparticles and its enhanced photocatalytic properties. CrystEngComm 16:2652–2659CrossRefGoogle Scholar
  82. 82.
    Wang D-J, Guo L, Zhen Y-Z, Yue L-L, Xue G-L, Fu F (2014) AgBr quantum dots decorated mesoporous Bi2WO6 architectures with enhanced photocatalytic activities for methylene blue. J Mater Chem A 2:11716–11727CrossRefGoogle Scholar
  83. 83.
    Xu H, Xu Y-G, Li H-M, Xia J-X, Xiong J, Yin S, Huang C-J, Wan H-L (2012) Synthesis, characterization and photocatalytic property of AgBr/BiPO4 heterojunction photocatalyst. Dalton Trans 41:3387–3394PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Wang D-W, Li Y, Puma G-L, Wang C, Wang P-F, Zhang W-L, Wang Q (2015) Dye-sensitized photoelectrochemical cell on plasmonic Ag/AgCl@chiral TiO2 nanofibers for treatment of urban wastewater effluents, with simultaneous production of hydrogen and electricity. Appl Catal B 168−169:25–32Google Scholar
  85. 85.
    Andersson M, Birkedal H, Franklin N-R, Ostomel T, Boettcher S, Palmqyist A-E-C, Stucky G-D (2005) Ag/AgCl-loaded ordered mesoporous anatase for photocatalysis. Chem Mater 17:1409–1415CrossRefGoogle Scholar
  86. 86.
    Hayashido Y, Naya S, Tada H (2016) Local electric field-enhanced plasmonic photocatalyst: formation of Ag cluster-incorporated AgBr nanoparticles on TiO2. J Phys Chem C 120:19663–19669CrossRefGoogle Scholar
  87. 87.
    Wang P-H, Tang Y-X, Dong Z-L, Chen Z, Lim T-T (2013) Ag–AgBr/TiO2/RGO nanocomposite for visible-light photocatalytic degradation of penicillin G. J Mater Chem A 1:4718–4727CrossRefGoogle Scholar
  88. 88.
    Elahifard M-R, Rahimnejad S, Haghighi S, Gholami M-R (2007) Apatite-coated Ag/AgBr/TiO2 visible-light photocatalyst for destruction of bacteria. J Am Chem Soc 129:9552–9553PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Xu Y-S, Zhang W-D (2013) Ag/AgBr-grafted graphite-like carbon nitride with enhanced plasmonic photocatalytic activity under visible light. ChemCatChem 5:2343–2351CrossRefGoogle Scholar
  90. 90.
    Putri L-K, Ong W-J, Chang W-S, Chai S-P (2016) Enhancement in the photocatalytic activity of carbon nitride through hybridization with light sensitive AgCl for carbon dioxide reduction to methane. Cat Sci Technol 6:744–754CrossRefGoogle Scholar
  91. 91.
    Zhang S-W, Li J-X, Wang X-K, Huang Y-S, Zeng M-Y, Xu J-Z (2014) In situ ion exchange synthesis of strongly coupled Ag@AgCl/g-C3N4 porous nanosheets as plasmonic photocatalyst for highly efficient visible-light photocatalysis. ACS Appl Mater Interfaces 6:22116–22125PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Yao X-X, Liu X-H, Hu X-L (2014) Synthesis of the Ag/AgCl/g-C3N4 composite with high photocatalytic activity under visible light irradiation. ChemCatChem 6:3409–3418CrossRefGoogle Scholar
  93. 93.
    Li H-Y, Gan S-Y, Wang H-Y, Han D-X, Niu L (2015) Intercorrelated Superhybrid of AgBr supported on graphitic-C3N4-decorated nitrogen-doped graphene: high engineering photocatalytic activities for water purification and CO2 reduction. Adv Mater 27:6906–6913PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Chen D-M, Wang Z-H, Du Y, Yang G-L, Ren T-Z, Ding H (2015) In situ ionic-liquid-assisted synthesis of plasmonic photocatalyst Ag/AgBr/g-C3N4 with enhanced visible-light photocatalytic activity. Catal Today 258:41–48CrossRefGoogle Scholar
  95. 95.
    Jiang J, Zhao K, Xiao X-Y, Zhang L-Z (2012) Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. J Am Chem Soc 134:4473–4476PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Ye L-Q, Zhan L, Tian L-H, Peng T-Y, Zhang J-J (2011) The {001} facets-dependent high photoactivity of BiOCl nanosheets. Chem Commun 47:6951–6953CrossRefGoogle Scholar
  97. 97.
    Li H, Shang J, Ai Z-H, Zhang L-Z (2015) Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets. J Am Chem Soc 137:6393–6399PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Cheng H-F, Huang B-B, Dai Y (2014) Engineering BiOX (X=Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 6:2009–2026PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Cheng H-F, Huang B-B, Dai Y, Qin X-Y, Zhang X-Y (2010) One-step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances. Langmuir 26(9):6618–6624CrossRefGoogle Scholar
  100. 100.
    Cheng H-F, Huang B-B, Wang P, Wang Z-Y, Lou Z-Z, Wang J-P, Qin X-Y, Zhang X-Y, Dai Y (2011) In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants. Chem Commun 47:7054–7056CrossRefGoogle Scholar
  101. 101.
    Ye L-Q, Liu J-Y, Gong C-Q, Tian L-H, Peng T-Y, Zan L (2012) Two different roles of metallic Ag on Ag/AgX/BiOX (X=Cl, Br) visible light photocatalysts: surface plasmon resonance and Z-scheme bridge. ACS Catal 2:1677–1683CrossRefGoogle Scholar
  102. 102.
    Xiong W, Zhao Q-D, Li X-Y, Zhang D-K (2011) One-step synthesis of flower-like Ag/AgCl/BiOCl composite with enhanced visible-light photocatalytic activity. Catal Commun 16:229–233CrossRefGoogle Scholar
  103. 103.
    Kong L, Jiang Z, Lai H-H, Nicholls R-J, Xiao T-C, Jones M-O, Edwards P-P (2012) Unusual reactivity of visible-light-responsive AgBr-BiOBr heterojunction photocatalysts. J Catal 293:116–125CrossRefGoogle Scholar
  104. 104.
    Wang W-S, Du H, Wang R-X, Wen T, Xu A-W (2013) Heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability under visible light. Nanoscale 5:3315–3321PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Yang S-B, Xu D-B, Chen B-Y, Luo B-F, Shi W-D (2017) In-situ synthesis of a plasmonic Ag/AgCl/Ag2O heterostructures for degradation of ciprofloxacin. Appl Catal B 204:602–610CrossRefGoogle Scholar
  106. 106.
    Sang Y, Kuai L, Chen C-Y, Fang Z, Geng B-Y (2014) Fabrication of a visible-light-driven plasmonic photocatalyst of AgVO3@AgBr@Ag nanobelt heterostructures. ACS Appl Mater Interfaces 6:5061–5068PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Zhang A-C, Zhang L-X, Lu H, Chen G-Y, Liu Z-C, Xiang J, Sun L-S (2016) Facile synthesis of ternary Ag/AgBr-Ag2CO3 hybrids with enhanced photocatalytic removal of elemental mercury driven by visible light. J Hazar Mater 314:78–87CrossRefGoogle Scholar
  108. 108.
    Bao S-Y, Wu Q-F, Chang S-Z, Tian B-Z, Zhang J-L (2017) Z-scheme CdS-Au-BiVO4 with enhanced photocatalytic activity for organic contaminant decomposition. Cat Sci Technol 7:124–132CrossRefGoogle Scholar
  109. 109.
    Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K (2006) All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system. Nat Mater 5:782–786PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Wang X-W, Liu G, Wang L-Z, Chen Z-G, Lu G-Q, Cheng H-M (2012) ZnO-CdS@Cd heterostructure for effective photocatalytic hydrogen generation. Adv Energy Mater 2:42–46CrossRefGoogle Scholar
  111. 111.
    Zhou P, Yu J-G, Jaroniec M (2014) All-solid-state Z-scheme photocatalytic systems. Adv Mater 26:4920–4935PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Iwase A, Ng Y-H, Ishiguro Y, Kudo A, Amal R (2011) Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J Am Chem Soc 133:11054–11057PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Maeda K (2013) Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal 3:1486–1503CrossRefGoogle Scholar
  114. 114.
    Li H-Y, Sun Y-J, Cai B, Gan S-Y, Han D-X, Niu L, Wu T-S (2015) Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (040) with enhancing photoelectrochemical and photocatalytic performance. Appl Catal B 170−171:206–214CrossRefGoogle Scholar
  115. 115.
    Qiao R, Mao M-M, Hu E-L, Zhong Y-J, Ning J-Q, Hu Y (2015) Facile formation of mesoporous BiVO4/Ag/AgCl heterostructured microspheres with enhanced visible-light photoactivity. Inorg Chem 54:9033–9039PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Zhang J, Niu C-G, Ke J, Zhou L-F, Zeng G-M (2015) Ag/AgCl/Bi2MoO6 composite nanosheets: a plasmonic Z-scheme visible light photocatalyst. Catal Commun 59:30–34CrossRefGoogle Scholar
  117. 117.
    Hou J-G, Wang Z, Yang C, Zhou W-L, Jiao S-Q, Zhu H-M (2013) Hierarchically plasmonic Z-scheme photocatalyst of Ag/AgCl nanocrystals decorated mesoporous single-crystalline metastable Bi20TiO32 nanosheets. J Phys Chem C 117:5132–5141CrossRefGoogle Scholar
  118. 118.
    Hou J-G, Yang C, Wang Z, Ji Q-H, Li Y-T, Huang G-C, Jiao S-Q, Zhu H-M (2013) Three-dimensional Z-scheme AgCl/Ag/γ-TaON heterostructural hollow spheres for enhanced visible-light photocatalytic performance. Appl Catal B 142−143:579–589CrossRefGoogle Scholar
  119. 119.
    Wang X-F, Li S-F, Ma Y-Q, Yu H-G, Yu J-G (2011) H2WO4·H2O/Ag/AgCl composite nanoplates: a plasmonic Z-scheme visible-light photocatalyst. J Phys Chem C 115:14648–14655CrossRefGoogle Scholar
  120. 120.
    Yao X-X, Liu X-H (2014) One-pot synthesis of ternary Ag2CO3/Ag/AgCl photocatalyst in natural geothermal water with enhanced photocatalytic activity under visible light irradiation. J Hazard Mater 280:260–268PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Cheng H-J, Hou J-G, Zhu H-M, Guo X-M (2014) Plasmonic Z-scheme α/β-Bi2O3-Ag-AgCl photocatalyst with enhanced visible-light photocatalytic performance. RSC Adv 4:41622–41630CrossRefGoogle Scholar
  122. 122.
    Zhou T, Xu Y-G, Xu H, Wang H-F, Da Z-L, Huang S-Q, Ji H-Y, Li H-M (2014) In situ oxidation synthesis of visible-light-driven plasmonic photocatalyst Ag/AgCl/g-C3N4 and its activity. Ceram Int 40:9293–9301CrossRefGoogle Scholar
  123. 123.
    Yan X, Wang X-Y, Gu W, Wu M-M, Yan Y, Hu B, Che G-B, Han D-L, Yang J-H, Fan W-Q, Shi W-D (2015) Single-crystalline AgIn(MoO4)2 nanosheets grafted Ag/AgBr composites with enhanced plasmonic phtotcatalytic activity for degradation of tetracycline under visible light. Appl Catal B 164:297–304CrossRefGoogle Scholar
  124. 124.
    Wang X-H, Yang J, Ma S-Q, Zhao D, Dai J, Zhang D-F (2016) In situ fabrication of AgI/AgVO3 nanoribbon composites with enhanced visible photocatalytic activity for redox reactions. Cat Sci Technol 6:243–253CrossRefGoogle Scholar
  125. 125.
    Li J-J, Xie Y-L, Zhong Y-J, Hu Y (2015) Facile synthesis of Z-scheme Ag2CO3/Ag/AgBr ternary heterostructured nanorods with improved photostability and photoactivity. J Mater Chem A 3:5474–5481CrossRefGoogle Scholar
  126. 126.
    Zhang L-S, Wong K-H, Chen Z-G, Yu J-C, Zhao J-C, Hu C, Chan C-Y, Wong P-K (2009) AgBr-Ag-Bi2WO6 nanojunction system: a novel and efficient photocatalyst with double visible-light active components. Appl Catal A General 363:221–229CrossRefGoogle Scholar
  127. 127.
    Katsumata H, Hayashi T, Taniguchi M, Suzuki T, Kaneco S (2014) Highly efficient visible-light driven AgBr/Ag3PO4 hybrid photocatalysts with enhanced photocatalytic activity. Mater Sci Semicond Process 25:68–75CrossRefGoogle Scholar
  128. 128.
    Cao J, Zhao Y-J, Lin H-L, Xu B-Y, Chen S-F (2013) Facile synthesis of novel Ag/AgI/BiOI composites with highly enhanced visible light photocatalytic performances. J Solid State Chem 206:38–44CrossRefGoogle Scholar
  129. 129.
    Xie R-Y, Zhang L-P, Xu H, Zhong Y, Sui X-F, Mao Z-P (2015) Fabrication of Z-scheme photocatalyst Ag-AgBr@Bi20TiO32 and its visible-light photocatalytic activity for the degradation of isoproturon herbicide. J Mol Catal A Chem 406:194–203CrossRefGoogle Scholar
  130. 130.
    Yang Y-X, Wan G, Guo Y-N, Zhao Y-H, Yuan X, Guo Y-H (2014) Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C3N4 with enhanced visible-light photocatalytic activity. J Hazard Mater 271:150–159PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Tian B-Z, Wang T-T, Dong R-F, Bao S-Y, Yang F, Zhang J-L (2014) Core-shell structured γ-Fe2O3@SiO2@AgBr:Ag composite with high magnetic separation efficiency and excellent visible light activity for acid orange 7 degradation. Appl Catal B 147:22–28CrossRefGoogle Scholar
  132. 132.
    Xia D-H, Hu L-L, Tan X-Q, He C, Pan W-Q, Yang T-S, Huang Y-L, Shu D (2016) Immobilization of self-stabilized plasmonic Ag-AgI on mesoporous Al2O3 for efficient purification of industrial waste gas with indoor LED illumination. Appl Catal B 185:295–306CrossRefGoogle Scholar
  133. 133.
    Fan Y-Y, Ma W-G, Han D-X, Gan S-Y, Dong X-D, Niu L (2015) Convenient recycling of 3D AgX/Graphene aerogels (X= Br, Cl) for efficient photocatalytic degradation of water pollutants. Adv Mater 27:3767–3773PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Xu Y-G, Zhou T, Huang S-Q, Xie M, Li H-P, Xu H, Xia J-X, Li H-M (2015) Preparation of magnetic Ag/AgCl/CoFe2O4 composites with high photocatalytic and antibacterial ability. RSC Adv 5:41475–41483CrossRefGoogle Scholar
  135. 135.
    Jing L-Q, Xu Y-G, Huang S-Q, Xie M, He M-Q, Xu H, Li H-M, Zhang Q (2016) Novel magnetic CoFe2O4/Ag/Ag3VO4 composites: highly efficient visible light photocatalytic and antibacterial activity. Appl Catal B 199:11–22CrossRefGoogle Scholar
  136. 136.
    Li Z-L, Ai J-Z, Ge M (2017) A facile approach assembled magnetic CoFe2O4/AgBr composite for dye degradation under visible light. J Environ Chem Eng 5:1394–1403CrossRefGoogle Scholar
  137. 137.
    An C-H, Ming X-J, Wang J-Z, Wang S-T (2012) Construction of magnetic visible-light-driven plasmonic Fe3O4@SiO2@AgCl:Ag nanophotocatalyst. J Mater Chem 22:5171–5176CrossRefGoogle Scholar
  138. 138.
    Guo J-F, Ma B-W, Yin A-Y, Fan K-N, Dai W-L (2011) Photodegradation of rhodamine B and 4-chlorophenol using plasmonic photocatalyst of Ag-AgI/Fe3O4@SiO2 magnetic nanoparticle under visible light irradiation. Appl Catal B 101:580–586CrossRefGoogle Scholar
  139. 139.
    Li G-T, Wong K-H, Zhang X-W, Hu C, Yu J-C, Chan R-C-Y, Wong P-K (2009) Degradation of Acid Orange 7 using magnetic AgBr under visible light: the roles of oxidizing species. Chemosphere 76:1185–1191PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Huang S-Q, Xu Y-G, Chen Z-G, Xie M, Xu H, He M-Q, Li H-M, Zhang Q (2015) A core-shell structured magnetic Ag/AgBr@Fe2O3 composite with enhanced photocatalytic activity for organic pollutant degradation and antibacterium. RSC Adv 5:71035–71045CrossRefGoogle Scholar
  141. 141.
    Zhao H-H, Zhang L-S, Gu X-D, Li S-J, Li B, Wang H-L, Yang J-M, Liu J-S (2015) Fe2O3-AgBr nonwoven cloth with hierarchical nanostructures as efficient and easily recyclable macroscale photocatalysts. RSC Adv 5:10951–10959CrossRefGoogle Scholar
  142. 142.
    Xu Y-G, Huang S-Q, Xie M, Li Y-P, Jing L-Q, Xu H, Zhang Q, Li H-M (2016) Core-shell magnetic Ag/AgCl@Fe2O3 photocatalysts with enhanced photoactivity for eliminating bisphenol A and microbial contamination. New J Chem 40:3413–3422CrossRefGoogle Scholar
  143. 143.
    McEvoy J-G, Zhang Z-S (2014) Synthesis and characterization of magnetically separable Ag/AgCl-magnetic activated carbon composites for visible light induced photocatalytic detoxification and disinfection. Appl Catal B 160–161:267–278CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jinlong Zhang
    • 1
  • Baozhu Tian
    • 1
  • Lingzhi Wang
    • 1
  • Mingyang Xing
    • 1
  • Juying Lei
    • 1
  1. 1.Key Laboratory for Advanced Materials & Institute of Fine ChemicalsEast China University of Science & TechnologyShanghaiChina

Personalised recommendations