Photocatalysis pp 275-305 | Cite as

Roles and Properties of Cocatalysts in Semiconductor-Based Materials for Efficient CO2 Photoreduction

  • Jinlong Zhang
  • Baozhu Tian
  • Lingzhi Wang
  • Mingyang Xing
  • Juying Lei
Part of the Lecture Notes in Chemistry book series (LNC, volume 100)


With the development of human society, excessive CO2 emission has caused a series of environmental problems. Semiconductor-based CO2 photocatalytic reduction (CO2PR) technology could not only replace the traditional fossil fuels into renewable solar energy but also address the above problematic CO2 emission, which has attracted worldwide attentions. Generally, the CO2PR reaction involved three key steps: light excitation of the semiconductor, photo-generated electron/hole pair separation and transfer, and the surface catalytic reactions. However, without modifications, bare semiconductors often show poor performance in both the activity and the selectivity in CO2PR. Hopefully, with the assistance of suitable cocatalysts, the performance of the photocatalyst composite can be greatly enhanced. In this chapter, we summarized the most efficient and common cocatalysts in CO2PR such as metal or alloy nanoparticles (NPs), graphene, carbon dots, metal organic frameworks (MOFs), semiconductors, etc. in recent years. Besides the synthesis methods and CO2PR evaluation measurements, we focused on the discussion of the distinct roles and properties of the cocatalysts combined with the advanced characterization techniques. Lastly, a short perspective further points out the challenge and limitations in this field. We hope this review could bring inspiration to the development of highly efficient photocatalytic system in CO2PR through the deep understanding of the roles of cocatalysts in the CO2PR reaction.


Cocatalysts CO2 reduction Photocatalytic Mechanism CH4 generation 


  1. 1.
    Marszewski M, Cao S, Yu J, Jaroniec M (2015) Semiconductor-based photocatalytic CO2 conversion. Mater Horiz 2(3):261–278CrossRefGoogle Scholar
  2. 2.
    Walsh B, Ciais P, Janssens IA, JP ˜u, Riahi K, Rydzak F, DPv V, Obersteiner M (2017) Pathways for balancing CO2 emissions and sinks. Nat Commun 8:14856–14868CrossRefGoogle Scholar
  3. 3.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  4. 4.
    Ma Y, Wang X, Jia Y, Chen X, Han H, Li C (2014) Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem Rev 114(19):9987–10043CrossRefGoogle Scholar
  5. 5.
    Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 52(29):7372–7408CrossRefGoogle Scholar
  6. 6.
    Dong C, Xing M, Zhang J (2016) Economic hydrophobicity triggering of CO2 photoreduction for selective CH4 generation on noble-metal-free TiO2-SiO2. J Phys Chem Lett 7:2962–2966CrossRefGoogle Scholar
  7. 7.
    Li K, Peng B, Peng T (2016) Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal 6:7485–7527CrossRefGoogle Scholar
  8. 8.
    Dong C, Xing M, Zhang J (2016) Double-cocatalysts promote charge separation efficiency in CO2 photoreduction: spatial location matters. Mater Horiz 3(6):608–612CrossRefGoogle Scholar
  9. 9.
    Wang W, An WJ, Ramalingam B, Mukherjee S, Niedzwiedzki DM, Gangopadhyay S, Biswas P (2012) Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J Am Chem Soc 134(27):11276–11281CrossRefGoogle Scholar
  10. 10.
    Xie S, Wang Y, Zhang Q, Deng W, Wang Y (2014) MgO- and Pt-promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water. ACS Catal 4(10):3644–3653CrossRefGoogle Scholar
  11. 11.
    Feng X, Sloppy JD, LaTempa TJ et al (2011) Synthesis and deposition of ultrafine Pt nanoparticles within high aspect ratio TiO2 nanotube arrays: application to the photocatalytic reduction of carbon dioxide. J Mater Chem 21:13429–13433CrossRefGoogle Scholar
  12. 12.
    Manzi A, Simon T, Sonnleitner C, Doblinger M, Wyrwich R, Stern O, Stolarczyk JK, Feldmann J (2015) Light-induced cation exchange for copper sulfide based CO2 reduction. J Am Chem Soc 137(44):14007–14010CrossRefGoogle Scholar
  13. 13.
    Mao J, Ye L, Li K et al (2014) Pt-loading reverses the photocatalytic activity order of anatase TiO2 {001} and {010} facets for photoreduction of CO2 to CH4. Appl Catal B-Environ 144:855–862CrossRefGoogle Scholar
  14. 14.
    Neatu S, Macia-Agullo JA, Concepcion P, Garcia H (2014) Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J Am Chem Soc 136(45):15969–15976CrossRefGoogle Scholar
  15. 15.
    Bai S, Wang X, Hu C, Xie M, Jiang J, Xiong Y (2014) Two-dimensional g-C3N4: an ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis. Chem Commun (Camb) 50(46):6094–6097CrossRefGoogle Scholar
  16. 16.
    Zhu Y, Xu Z, Jiang W et al (2017) Engineering on the edge of Pd nanosheet cocatalysts for enhanced photocatalytic reduction of CO2 to fuels. J Mater Chem A 5(6):2619–2628CrossRefGoogle Scholar
  17. 17.
    Li N, Liu M, Yang B et al (2017) Enhanced photocatalytic performance toward CO2 hydrogenation over nanosized TiO2-loaded Pd under UV irradiation. J Phys Chem C 121(5):2923–2932CrossRefGoogle Scholar
  18. 18.
    Long R, Li Y, Liu Y et al (2017) Isolation of Cu atoms in Pd lattice: forming highly selective sitesfor photocatalytic conversion of CO2 to CH4. J Am Chem Soc 139:4486–4492CrossRefGoogle Scholar
  19. 19.
    Kong D, Tan JZY, Yang F, Zeng J, Zhang X (2013) Electrodeposited Ag nanoparticles on TiO2 nanorods for enhanced UV visible light photoreduction CO2 to CH4. Appl Surf Sci 277:105–110CrossRefGoogle Scholar
  20. 20.
    Kuriki R, Matsunaga H, Nakashima T, Wada K, Yamakata A, Ishitani O, Maeda K (2016) Nature-inspired, highly durable CO2 reduction system consisting of a binuclear Ruthenium(II) complex and an organic semiconductor using visible light. J Am Chem Soc 138(15):5159–5170CrossRefGoogle Scholar
  21. 21.
    Li K, Peng T, Ying Z, Song S, Zhang J (2016) Ag-loading on brookite TiO2 quasi nanocubes with exposed {210} and {001} facets: activity and selectivity of CO2 photoreduction to CO/CH4. Appl Catal B-Environ 180:130–138CrossRefGoogle Scholar
  22. 22.
    Wei Y, Jiao J, Zhao Z, Liu J, Li J, Jiang G, Wang Y, Duan A (2015) Fabrication of inverse opal TiO2-supported Au@CdS core-shell nanoparticles for efficient photocatalytic CO2 conversion. Appl Catal B-Environ 179:422–432CrossRefGoogle Scholar
  23. 23.
    Zhou P, Yu J, Jaroniec M (2014) All-solid-state Z-scheme photocatalytic systems. Adv Mater 26(29):4920–4935CrossRefGoogle Scholar
  24. 24.
    Ong WJ, Putri LK, Tan LL, Chai SP, Yong ST (2016) Heterostructured AgX/g-C3N4 (X=Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach: emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide. Appl Catal B-Environ 180:530–543CrossRefGoogle Scholar
  25. 25.
    He Y, Zhang L, Teng B, Fan M (2015) New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel. Envirom Sci Technol 49(1):649–656CrossRefGoogle Scholar
  26. 26.
    Chang X, Wang T, Gong J (2016) CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ Sci 9:2177–2196CrossRefGoogle Scholar
  27. 27.
    Ji Y, Luo Y (2016) New mechanism for photocatalytic reduction of CO2 on the anatase TiO2 (101) surface: the essential role of oxygen vacancy. J Am Chem Soc 138(49):15896–15902CrossRefGoogle Scholar
  28. 28.
    Kar P, Farsinezhad S, Mahdi N, Zhang Y, Obuekwe U, Sharma H, Shen J, Semagina N, Shankar K (2016) Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles. Nano Res 9(11):3478–3493CrossRefGoogle Scholar
  29. 29.
    Li M, Li P, Chang K, Wang T, Liu L, Kang Q, Ouyang S, Ye J (2015) Highly efficient and stable photocatalytic reduction of CO2 to CH4 over Ru loaded NaTaO3. Chem Commun (Camb) 51(36):7645–7648CrossRefGoogle Scholar
  30. 30.
    Yu B, Zhou Y, Li P, Tu W, Li P, Tang L, Ye J, Zou Z (2016) Photocatalytic reduction of CO2 over Ag/TiO2 nanocomposites prepared with a simple and rapid silver mirror method. Nanoscale 8(23):11870–11874CrossRefGoogle Scholar
  31. 31.
    Pan Y, Sun Z, Cong H, Men Y, Xin S, Song J, Yu S (2016) Photocatalytic CO2 reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide. Nano Res 9(6):1689–1700CrossRefGoogle Scholar
  32. 32.
    Lee S, Jeong S, Kim WD, Lee S, Lee K, Bae WK, Moon JH, Lee S, Lee DC (2016) Low-coordinated surface atoms of CuPt alloy cocatalysts on TiO2 for enhanced photocatalytic conversion of CO2. Nanoscale 8(19):10043–10048CrossRefGoogle Scholar
  33. 33.
    Kang Q, Wang T, Li P, Liu L, Chang K, Li M, Ye J (2015) Photocatalytic reduction of carbon dioxide by hydrous hydrazine over Au-Cu alloy nanoparticles supported on SrTiO3/TiO2 coaxial nanotube arrays. Angew Chem Int Ed 54(3):841–845CrossRefGoogle Scholar
  34. 34.
    Wang T, Shi L, Tang J, Malgras V, Asahina S, Liu G, Zhang H, Meng X, Chang K, He J, Terasaki O, Yamauchi Y, Ye J (2016) A Co3O4-embedded porous ZnO rhombic dodecahedron prepared using zeolitic imidazolate frameworks as precursors for CO2 photoreduction. Nanoscale 8(12):6712–6720CrossRefGoogle Scholar
  35. 35.
    Wang WN, Wu F, Myung Y et al (2015) Surface engineered CuO nanowires with ZnO islands for CO2 photoreduction. ACS Appl Mater Interfaces 7(10):5685–5692CrossRefGoogle Scholar
  36. 36.
    Yu W, Xu D, Peng T (2015) Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism. J Mater Chem A 3:19936–19947CrossRefGoogle Scholar
  37. 37.
    In S-I, Dimitri D, Vaughn II, Schaak RE (2012) Hybrid CuO-TiO2-xNx hollow nanocubes for photocatalytic conversion of CO2 into methane under solar irradiation. Angew Chem Int Ed 124:3981–3984CrossRefGoogle Scholar
  38. 38.
    Jin J, Yu J, Guo D, Cui C, Ho W (2015) A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity. Small 11(39):5262–5271CrossRefGoogle Scholar
  39. 39.
    Wang J, Yao H, Fan Z, Zhang L, Wang J, Zang S, Li Z (2016) Indirect Z-scheme BiOI/g-C3N4 photocatalysts with enhanced photoreduction CO2 activity under visible light irradiation. ACS Appl Mater Interfaces 8(6):3765–3775CrossRefGoogle Scholar
  40. 40.
    Li P, Zhou Y, Zhao Z, Xu Q, Wang X, Xiao M, Zou Z (2015) Hexahedron prism-anchored octahedronal CeO2: crystal facet-based homojunction promoting efficient solar fuel synthesis. J Am Chem Soc 137(30):9547–9550CrossRefGoogle Scholar
  41. 41.
    Zhai Q, Xie S, Fan W, Zhang Q, Wang Y, Deng W, Wang Y (2013) Photocatalytic conversion of carbon dioxide with water into methane: platinum and copper(I) oxide co-catalysts with a core-shell structure. Angew Chem Int Ed 125(22):5888–5891CrossRefGoogle Scholar
  42. 42.
    Liu Q, Zhou Y, Kou J et al (2010) High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. J Am Chem Soc 132(41):14385–14387CrossRefGoogle Scholar
  43. 43.
    Sarkar A, Gracia-Espino E, Wågberg T, Shchukarev A, Mohl M, Rautio AR, Pitkänen O, Sharifi T, Kordas K, Mikkola JP (2016) Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: understanding the reduction pathway. Nano Res 9(7):1956–1968CrossRefGoogle Scholar
  44. 44.
    Wei Y, Jiao J, Zhao Z, Zhong W, Li J, Liu J, Jiang G, Duan A (2015) 3D ordered macroporous TiO2-supported Pt@CdS core-shell nanoparticles: design, synthesis and efficient photocatalytic conversion of CO2 with water to methane. J Mater Chem A 3(20):11074–11085CrossRefGoogle Scholar
  45. 45.
    Li H, Gao Y, Zhou Y et al (2016) Construction and nanoscale detection of interfacial charge transfer of elegant Z-scheme WO3/Au/In2S3 nanowire arrays. Nano Lett 16(9):5547–5552CrossRefGoogle Scholar
  46. 46.
    Pastrana-Martínez LM, Silva AMT, Fonseca NNC, Vaz JR, Figueiredo JL, Faria JL (2016) Photocatalytic reduction of CO2 with water into methanol and ethanol using graphene derivative-TiO2 composites: effect of pH and copper(I) oxide. Top Catal 59(15–16):1279–1291CrossRefGoogle Scholar
  47. 47.
    Pan Y, You Y, Xin S, Li Y, Fu G, Cui Z, Men Y, Cao F, Yu S, Goodenough JB (2017) Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts. J Am Chem Soc 139(11):4123–4129CrossRefGoogle Scholar
  48. 48.
    Wang Y, Bai X, Qin H, Wang F, Li Y, Li X, Kang S, Zuo Y, Cui L (2016) Facile one-step synthesis of hybrid graphitic carbon nitride and carbon composites as high-performance catalysts for CO2 photocatalytic conversion. ACS Appl Mater Interfaces 8(27):17212–17219CrossRefGoogle Scholar
  49. 49.
    Tu W, Zhou Y, Liu Q, Yan S, Bao S, Wang X, Xiao M, Zou Z (2013) An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Adv Funct Mater 23(14):1743–1749CrossRefGoogle Scholar
  50. 50.
    Tu W, Zhou Y, Liu Q, Tian Z, Gao J, Chen X, Zhang H, Liu J, Zou Z (2012) Robust hollow spheres consisting of alternating titania nanosheets and graphene nanosheets with high photocatalytic activity for CO2 conversion into renewable fuels. Adv Funct Mater 22(6):1215–1221CrossRefGoogle Scholar
  51. 51.
    Gao C, Meng Q, Zhao K et al (2016) Co3O4 hexagonal platelets with controllable facets enabling highly efficient visible-light photocatalytic reduction of CO2. Adv Mater 28(30):6485–6490CrossRefGoogle Scholar
  52. 52.
    Xu Y, Yang M, Chen B, Wang X, Chen H, Kuang D, Su C (2017) A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J Am Chem Soc 139(16):5660–5663CrossRefGoogle Scholar
  53. 53.
    Li R, Hu J, Deng M et al (2014) Integration of an inorganic semiconductor with a metal–organic framework: a platform for enhanced gaseous photocatalytic reactions. Adv Mater 26(28):4783–4788CrossRefGoogle Scholar
  54. 54.
    Yu J, Jin J, Cheng B, Jaroniec M (2014) A noble metal-free reduced graphene oxide–CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J Mater Chem A 2(10):3407CrossRefGoogle Scholar
  55. 55.
    Ong WJ, Putri LK, Tan YC, Tan LL, Li N, Ng YH, Wen X, Chai SP (2017) Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: a combined experimental and first-principles DFT study. Nano Res 10(5):1673–1696CrossRefGoogle Scholar
  56. 56.
    Shi L, Wang T, Zhang H, Chang K, Ye J (2015) Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction. Adv Funct Mater 25(33):5360–5367CrossRefGoogle Scholar
  57. 57.
    Park SM, Razzaq A, Park YH, Sorcar S, Park Y, Grimes CA, In SI (2016) Hybrid CuxO-TiO2 heterostructured composites for photocatalytic CO2 reduction into methane using solar irradiation: sunlight into fuel. ACS Omega 1(5):868–875CrossRefGoogle Scholar
  58. 58.
    Ong WJ, Tan LL, Chai SP, Yong ST, Mohamed AR (2015) Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy 13:757–770CrossRefGoogle Scholar
  59. 59.
    Ming H, Ma Z, Liu Y, Pan K, Yu H, Wang F, Kang Z (2012) Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans 41(31):9526–9531CrossRefGoogle Scholar
  60. 60.
    Yu H, Zhao Y, Zhou C, Shang L, Peng Y, Cao Y, Wu L, Tung C, Zhang T (2014) Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J Mater Chem A 2(10):3344CrossRefGoogle Scholar
  61. 61.
    Shi H, Chen G, Zhang C, Zou Z (2014) Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel. ACS Catal 4(10):3637–3643CrossRefGoogle Scholar
  62. 62.
    Wang D, Hisatomi T, Takata T, Pan C, Katayama M, Kubota J, Domen K (2013) Core/Shell photocatalyst with spatially separated co-catalysts for efficient reduction and oxidation of water. Angew Chem Int Ed 52(43):11252–11256CrossRefGoogle Scholar
  63. 63.
    Zheng D, Cao X, Wang X (2016) Precise formation of a hollow carbon nitride structure with a janus surface to promote water splitting by photoredox catalysis. Angew Chem Int Ed 55(38):11512–11516CrossRefGoogle Scholar
  64. 64.
    Li A, Chang X, Huang Z et al (2016) Thin heterojunctions and spatially separated cocatalysts to simultaneously reduce bulk and surface recombination in photocatalysts. Angew Chem Int Ed 55(44):13734–13738CrossRefGoogle Scholar
  65. 65.
    Zhang J, Yu Z, Gao Z, Ge H, Zhao S, Chen C, Chen S, Tong X, Wang M, Zheng Z, Qin Y (2017) Porous TiO2 nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production. Angew Chem Int Ed Eng 56(3):816–820CrossRefGoogle Scholar
  66. 66.
    Xie S, Wang Y, Zhang Q, Fan W, Deng W, Wang Y (2013) Photocatalytic reduction of CO2 with H2O: significant enhancement of the activity of Pt-TiO2 in CH4 formation by addition of MgO. Chem Commun (Camb) 49(24):2451–2453CrossRefGoogle Scholar
  67. 67.
    Mistry H, Varela AS, Kühl S, Strasser P, Cuenya BR (2016) Nanostructured electrocatalysts with tunable activity and selectivity. Nat Rev Mater 1(4):16009CrossRefGoogle Scholar
  68. 68.
    Gao D, Zhou H, Wang J, Miao S, Yang F, Wang G, Wang J, Bao X (2015) Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc 137(13):4288–4291CrossRefGoogle Scholar
  69. 69.
    Gao G, Jiao Y, Waclawik ER, Du A (2016) Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J Am Chem Soc 138(19):6292–6297CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jinlong Zhang
    • 1
  • Baozhu Tian
    • 1
  • Lingzhi Wang
    • 1
  • Mingyang Xing
    • 1
  • Juying Lei
    • 1
  1. 1.Key Laboratory for Advanced Materials & Institute of Fine ChemicalsEast China University of Science & TechnologyShanghaiChina

Personalised recommendations