Advertisement

Photocatalysis pp 259-274 | Cite as

Photo-Fenton Reaction

  • Jinlong Zhang
  • Baozhu Tian
  • Lingzhi Wang
  • Mingyang Xing
  • Juying Lei
Chapter
Part of the Lecture Notes in Chemistry book series (LNC, volume 100)

Abstract

Photoirradiation has been introduced into the homogeneous and heterogeneous Fenton system, improving the reaction activity through accelerating the reduction of Fe3+ to Fe2+. Carriers including clay, porous, and graphene materials are widely used for the loading and fixing of iron-based nanoparticles. Leaching and loss of iron species can be prevented. The combination of iron oxide and semiconductor photocatalyst has been proven efficient for enhancing the reaction efficiency via utilizing the photocatalytically induced electron. Other photo-Fenton agents including zerovalent iron and noble metal are also introduced in this chapter.

Keywords

Photo-Fenton Fe3+ Fe2+ Homogeneous Heterogeneous 

References

  1. 1.
    Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc 65:899–910CrossRefGoogle Scholar
  2. 2.
    Walling C, Goosen A (1973) Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates. J Am Chem Soc 95:2987–2991CrossRefGoogle Scholar
  3. 3.
    Lipczynska-Kochany E (1991) Novel method for a photocatalytic degradation of 4-nitrophenol in homogeneous aqeuous solution. Environ Technol 12:87–92CrossRefGoogle Scholar
  4. 4.
    Zepp RG, Faust BC, Hoigne J (1992) Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron(II) with hydrogen peroxide: the photo-Fenton reaction. Environ Sci Technol 26:313–319CrossRefGoogle Scholar
  5. 5.
    Lucas MS, Peres JA (2006) Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dyes Pigments 71:236–244CrossRefGoogle Scholar
  6. 6.
    Moraes JEF, Silva DN, Quina FH et al (2004) Utilization of solar energy in the photodegradation of gasoline in water and of oil-field-produced water. Environ Sci Technol 38:3746–3751CrossRefGoogle Scholar
  7. 7.
    Ortega-Gómez E, Ballesteros Martín MM, Carratalà A et al (2015) Principal parameters affecting virus inactivation by the solar photo-Fenton process at neutral pH and μM concentrations of H2O2 and Fe2+/3+. Appl Catal B Environ 174–175:395–402CrossRefGoogle Scholar
  8. 8.
    Fernandez J, Bandara J, Kiwi J et al (1998) Efficient photo-assisted Fenton catalysis mediated by Fe ions on Nafion membranes active in the abatement of non-biodegradable azo-dye. Chem Commun 14:1493–1494CrossRefGoogle Scholar
  9. 9.
    Yuranova T, Enea O, Mielczarski E et al (2004) Fenton immobilized photo-assisted catalysis through a Fe/C structured fabric. Appl Catal B Environ 49:39–50CrossRefGoogle Scholar
  10. 10.
    Bozzi A, Yuranova T, Mielczarski J et al (2002) Abatement of oxalates catalyzed by Fe-silica structured surfaces via cyclic carboxylate intermediates in photo-Fenton reactions. Chem Commun 0:2202–2203CrossRefGoogle Scholar
  11. 11.
    Ma W, Huang Y, Li J et al (2003) An efficient approach for the photodegradation of organic pollutants by immobilized iron ions at neutral pHs. Chem Commun 0:1582–1583CrossRefGoogle Scholar
  12. 12.
    Li J, Ma W, Huang Y et al (2004) Oxidative degradation of organic pollutants utilizing molecular oxygen and visible light over a supported catalyst of Fe(bpy)3 2+ in water. Appl Catal B Environ 48:17–24CrossRefGoogle Scholar
  13. 13.
    Zhang G, Gao Y, Zhang Y et al (2010) Fe2O3-pillared rectorite as an efficient and stable Fenton-like heterogeneous catalyst for photodegradation of organic contaminants. Environ Sci Technol 44:6384–6389CrossRefGoogle Scholar
  14. 14.
    Feng J, Hu X, Yue PL et al (2003) Discoloration and mineralization of Reactive Red HE-3B by heterogeneous photo-Fenton reaction. Water Res 37:3776–3784CrossRefGoogle Scholar
  15. 15.
    Wei X, Wu H, He G et al (2017) Efficient degradation of phenol using iron-montmorillonite as a Fenton catalyst: importance of visible light irradiation and intermediates. J Hazard Mater 321:408–416CrossRefGoogle Scholar
  16. 16.
    Bossmann SH, Oliveros E, Gob S et al (2001) Degradation of polyvinyl alcohol (PVA) by homogeneous and heterogeneous photo catalysis applied to the photochemically enhanced Fenton reactions. Water Sci Technol 44:257–262CrossRefGoogle Scholar
  17. 17.
    Gonzalez-Olmos R, Martin MJ, Georgi A et al (2012) Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH. Appl Catal B Environ 125:51–58CrossRefGoogle Scholar
  18. 18.
    Qian X, Ren M, Zhu Y et al (2017) Visible light assisted heterogeneous Fenton-like degradation of organic pollutant via α-FeOOH/mesoporous carbon composites. Environ Sci Technol 51:3993–4000CrossRefGoogle Scholar
  19. 19.
    Song AN, Hameed BH (2013) Degradation of Acid Blue 29 in visible light radiation using iron modified mesoporous silica as heterogeneous photo-Fenton catalyst. Appl Catal A: Gel 450:96–105CrossRefGoogle Scholar
  20. 20.
    Gu L, Zhu N, Guo H et al (2013) Adsorption and Fenton-like degradation of naphthalene dye intermediate on sewage sludge derived porous carbon. J Hazard Mater 246–247:145–153CrossRefGoogle Scholar
  21. 21.
    Qiu BC, Li QY, Shen B et al (2016) Stöber-like method to synthesize ultradispersed Fe3O4 nanoparticles on graphene with excellent Photo-Fenton reaction and high-performance lithium storage. Appl Catal B Environ 125:216–223CrossRefGoogle Scholar
  22. 22.
    Qiu BC, Xing MY, Zhang JL (2015) Stöber-like method to synthesize ultralight, porous, stretchable Fe2O3/graphene aerogels for excellent performance in photo-Fenton reaction and electrochemical capacitors. J Mater Chem A 3:12820–12827CrossRefGoogle Scholar
  23. 23.
    Yang X, Chen W, Huang J et al (2015) Rapid degradation of methylene blue in a novel heterogeneous Fe3O4@rGO@TiO2-catalyzed photo-Fenton system. Sci Rep 5:10632CrossRefGoogle Scholar
  24. 24.
    Shi W, Du D, Shen B et al (2016) Synthesis of yolk−shell structured Fe3O4@void@CdS nanoparticles: a general and effective structure design for photo-Fenton reaction. ACS Appl Mater Interf 8:20831–20838CrossRefGoogle Scholar
  25. 25.
    Du D, Shi W, Wang LZ et al (2017) Fenton-like catalyst for the extremely efficient elimination of tetracycline. Appl Catal B Environ 200:484–492CrossRefGoogle Scholar
  26. 26.
    Devi LG, Kumar SG, Reddy KM et al (2009) Photo degradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism. J Hazard Mater 164:459–467CrossRefGoogle Scholar
  27. 27.
    Navalon S, Matin R, Alvaro M et al (2010) Gold on diamond nanoparticles as a highly efficient Fenton catalyst. Angew Chem Inter Ed 49:8403–8407CrossRefGoogle Scholar
  28. 28.
    Navalon S, De Miguel M, Martin R et al (2011) Enhancement of the catalytic activity of supported gold nanoparticles for the Fenton reaction by light. J Am Chem Soc 133:2218–2226CrossRefGoogle Scholar
  29. 29.
    Hallett-Tapley GL, Jazmín Silvero M, González-Béjar M et al (2011) Plasmon-mediated catalytic oxidation of sec-phenethyl and benzyl alcohols. J Phys Chem C 115:10784–10790CrossRefGoogle Scholar
  30. 30.
    Farias J, Rossetti GH, Albizzati ED et al (2007) Solar degradation of formic acid: temperature effects on the photo-Fenton reaction. Ind Eng Chem Res 46:7580–7586CrossRefGoogle Scholar
  31. 31.
    Ma J, Ma W, Song W et al (2006) Fenton degradation of organic pollutants in the presence of low-molecular-weight organic acids: cooperative effect of quinone and visible light. Environ Sci Technol 40:618–624CrossRefGoogle Scholar
  32. 32.
    Kiwi J, Lopes A, Nadtochenko V (2000) Mechanism and kinetics of the OHRadical intervention during Fenton oxidation in the presence of a significant amount of radical scavenger (Cl-). Environ Sci Technol 34:2162–2168CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jinlong Zhang
    • 1
  • Baozhu Tian
    • 1
  • Lingzhi Wang
    • 1
  • Mingyang Xing
    • 1
  • Juying Lei
    • 1
  1. 1.Key Laboratory for Advanced Materials & Institute of Fine ChemicalsEast China University of Science & TechnologyShanghaiChina

Personalised recommendations