Mechanism of Photocatalysis

  • Jinlong Zhang
  • Baozhu Tian
  • Lingzhi Wang
  • Mingyang Xing
  • Juying Lei
Part of the Lecture Notes in Chemistry book series (LNC, volume 100)


Since environmental pollution and energy shortage are becoming the big challenge for the new developing and developed world because of the industrial revolution, photocatalysis is an effective technology to solve the above problems. In this chapter, we briefly introduce the photocatalytic mechanism, the advantages of photocatalysis technology, and their applications. As the representative of photocatalyst, titanium dioxide is introduced in detail. The influence of different parameters (photocatalyst loading, pH, surface area and morphology, reaction temperatures, contaminant concentration, and calcination temperature of photocatalysts) on the degradation of pollutants is also introduced.


Photocatalysis TiO2 Photocatalytic mechanism Influence parameters 


  1. 1.
    Arakawa H, Aresta M, Armor JN et al (2001) Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem Rev 101(4):953–996CrossRefGoogle Scholar
  2. 2.
    Esswein AJ, Nocera DG (2007) Hydrogen production by molecular photocatalysis. Chem Rev 107(10):4022–4047CrossRefGoogle Scholar
  3. 3.
    Hoffmann MR, Martin ST, Choi W et al (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96CrossRefGoogle Scholar
  4. 4.
    Hashim MA, Mukhopadhyay S, Sahu JN et al (2011) Remediation technologies for heavy metal contaminated groundwater. J Environ Manag 92(10):2355–2388CrossRefGoogle Scholar
  5. 5.
    Haji-Saeid SM, Sampa MH, Safrany A et al (2012) Radiation processing techniques in remediation of pollutants, and the role of the IAEA in supporting capacity building in developing countries. Radiat Phys Chem 81(8):1040–1044CrossRefGoogle Scholar
  6. 6.
    Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manag 71(2):95–122CrossRefGoogle Scholar
  7. 7.
    Yeung AT, Gu YY (2011) A review on techniques to enhance electrochemical remediation of contaminated soils. J Hazard Mater 195(0):11–29CrossRefGoogle Scholar
  8. 8.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(0):37–38CrossRefGoogle Scholar
  9. 9.
    Ba-Abbad MM, Kadhum AAH, Mohamad AB et al (2013) Visible light photocatalytic activity of Fe3+-doped ZnO nanoparticle prepared via sol–gel technique. Chemosphere 91(11):1604–1611CrossRefGoogle Scholar
  10. 10.
    Burton P, Peterson E, Boyle T et al (2010) Synthesis of high surface area ZnO(0001) plates as novel oxide supports for heterogeneous catalysts. Catal Lett 139(1–2):26–32CrossRefGoogle Scholar
  11. 11.
    Bignozzi CA, Caramori S, Cristino V et al (2013) Nanostructured photoelectrodes based on WO3: applications to photooxidation of aqueous electrolytes. Chem Soc Rev 42(6):2228–2246CrossRefGoogle Scholar
  12. 12.
    Tian L, Ye L, Liu J et al (2012) Solvothermal synthesis of CNTs–WO3 hybrid nanostructures with high photocatalytic activity under visible light. Catal Commun 17(0):99–103CrossRefGoogle Scholar
  13. 13.
    Franking R, Li L, Lukowski MA et al (2013) Facile post-growth doping of nanostructured hematite photoanodes for enhanced photoelectrochemical water oxidation. Energy Environ Sci 6(2):500–512CrossRefGoogle Scholar
  14. 14.
    Bang JU, Lee SJ, Jang JS et al (2012) Geometric effect of single or double metal-tipped CdSe nanorods on photocatalytic H2 generation. J Phys Chem Lett 3(24):3781–3785CrossRefGoogle Scholar
  15. 15.
    Wang J, Yin S, Zhang Q et al (2003) Mechanochemical synthesis of fluorine-doped SrTiO3 and its photo-oxidation properties. Chem Lett 32(6):540–541CrossRefGoogle Scholar
  16. 16.
    Bhatkhande DS, Pangarkar VG, Beenackers AACM (2002) Photocatalytic degradation for environmental applications – a review. J Chem Technol Biotechnol 77(1):102–116CrossRefGoogle Scholar
  17. 17.
  18. 18.
  19. 19.
  20. 20.
    Budavari S (1996) An encyclopedia of chemicals, drugs, and biologicals, merck index, 12th edn. Merck, Whitehouse Station, p 1617Google Scholar
  21. 21.
    Renz C (1921) Photoreactions of oxides of titanium, cerium and earth acids. Helv Chim Acta 4(0):961–968CrossRefGoogle Scholar
  22. 22.
    Keidel E (1929) Die Beeinflussung der Lichtechtheit von Teerfarblacken durch Titanweiss (The effect on the light fastness of coal tar dye paints by titanium white). Farben-Zeitung 34(0):1242–1243Google Scholar
  23. 23.
    Serpone N, Emeline AV, Horikoshi S et al (2012) On the genesis of heterogeneous photocatalysis: a brief historical perspective in the period 1910 to the mid-1980s. Photochem Photobiol Sci 11(7):1121–1150CrossRefGoogle Scholar
  24. 24.
    Mills A, Hunte SL (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A Chem 108(1):1–35CrossRefGoogle Scholar
  25. 25.
    Chen X, Shen S, Guo L et al (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570CrossRefGoogle Scholar
  26. 26.
    Vinu R, Madras G (2011) Photocatalytic degradation of water pollutants using Nano-TiO2. In: Zang L (ed) Energy efficiency and renewable energy through nanotechnology. Springer, London, pp 625–677CrossRefGoogle Scholar
  27. 27.
    Rauf M, Ashraf SS (2009) Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem Eng J 151(1):10–18CrossRefGoogle Scholar
  28. 28.
    Wang CC, Lee CK, Lyu MD et al (2008) Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: an investigation of the effects of operational parameters. Dyes Pigments 76(3):817–824CrossRefGoogle Scholar
  29. 29.
    Macedo LC, Zaia DAM, Moore GJ et al (2007) Degradation of leather dye on TiO2: a study of applied experimental parameters on photoelectrocatalysis. J Photochem Photobiol A Chem 185(1):86–93CrossRefGoogle Scholar
  30. 30.
    Ahmed S, Rasul MG, Martens W et al (2011) Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: a review. Water Air Soil Pollut 215(1–4):3–29CrossRefGoogle Scholar
  31. 31.
    Muruganandham M, Swaminathan M (2006) Photocatalytic decolourisation and degradation of Reactive Orange 4 by TiO2-UV process. Dyes Pigments 68(2):133–142CrossRefGoogle Scholar
  32. 32.
    Kaneco S, Rahman MA, Suzuki T (2004) Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide. J Photochem Photobiol A Chem 163(3):419–424CrossRefGoogle Scholar
  33. 33.
    Qamar M, Saquib M, Muneer M et al (2005) Titanium dioxide mediated photocatalytic degradation of two selected azo dye derivatives, chrysoidine R and acid red 29 (chromotrope 2R), in aqueous suspensions. Desalination 186(1–3):255–271CrossRefGoogle Scholar
  34. 34.
    Kositzi M, Poulios I, Samara K et al (2007) Photocatalytic oxidation of Cibacron Yellow LS-R. J Hazard Mater 146(3):680–685CrossRefGoogle Scholar
  35. 35.
    Chiou CH, Wu CY, Juang RS (2008) Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process. Chem Eng J 139(2):322–329CrossRefGoogle Scholar
  36. 36.
    Chen LC, Huang CM, Tsai FR (2007) Characterization and photocatalytic activity of K+-doped TiO2 photocatalysts. J Mol Catal A Chem 265(1–2):133–140CrossRefGoogle Scholar
  37. 37.
    Muruganandham M, Shobana N, Swaminathan M (2006) Optimization of solar photocatalytic degradation conditions of Reactive Yellow 14 azo dye in aqueous TiO2. J Mol Catal A Chem 246(1–2):154–161CrossRefGoogle Scholar
  38. 38.
    Behnajady MA, Moghaddam SG, Modirshahla N (2009) Investigation of the effect of heat attachment method parameters at photocatalytic activity of immobilized ZnO nanoparticles on glass plate. Desalination 249(3):1371–1376CrossRefGoogle Scholar
  39. 39.
    Saquib M, Muneer M (2002) Semiconductor mediated photocatalysed degradation of an anthraquinone dye, Remazol Brilliant Blue R under sunlight and artificial light source. Dyes Pigments 53(3):237–249CrossRefGoogle Scholar
  40. 40.
    Saquib M, Abu Tariq M, Haque MM (2008) Photocatalytic degradation of disperse blue 1 using UV/TiO2/H2O2 process. J Environ Manag 88(2):300–306CrossRefGoogle Scholar
  41. 41.
    Pare B, Jonnalagadda SB, Tomar H (2008) ZnO assisted photocatalytic degradation of acridine orange in aqueous solution using visible irradiation. Desalination 232(1–3):80–90CrossRefGoogle Scholar
  42. 42.
    Abu Tariq M, Faisal M, Muneer M (2005) Semiconductor-mediated photocatalysed degradation of two selected azo dye derivatives, amaranth and bismarck brown in aqueous suspension. J Hazard Mater 127(1–3):172–179CrossRefGoogle Scholar
  43. 43.
    Saquib M, Muneer M (2003) Titanium dioxide mediated photocatalyzed degradation of a textile dye derivative, acid orange 8, in aqueous suspensions. Desalination 155(3):255–263CrossRefGoogle Scholar
  44. 44.
    Abu Tariq M, Faisal M, Saquib M et al (2008) Heterogeneous photocatalytic degradation of an anthraquinone and a triphenylmethane dye derivative in aqueous suspensions of semiconductor. Dyes Pigments 76(2):358–365CrossRefGoogle Scholar
  45. 45.
    Faisal M, Abu Tariq M, Muneer M (2007) Photocatalysed degradation of two selected dyes in UV-irradiated aqueous suspensions of titania. Dyes Pigments 72(2):233–239CrossRefGoogle Scholar
  46. 46.
    Haque MM, Muneer M (2007) TiO2-mediated photocatalytic degradation of a textile dye derivative, bromothymol blue, in aqueous suspensions. Dyes Pigments 75(2):443–448CrossRefGoogle Scholar
  47. 47.
    Saquib M, Abu Tariq M, Faisal M (2008) Photocatalytic degradation of two selected dye derivatives in aqueous suspensions of titanium dioxide. Desalination 219(1–3):301–311CrossRefGoogle Scholar
  48. 48.
    Vijayabalan A, Selvam K, Velmurugan R (2009) Photocatalytic activity of surface fluorinated TiO2-P25 in the degradation of Reactive Orange 4. J Hazard Mater 172(2–3):914–921CrossRefGoogle Scholar
  49. 49.
    Su Y, Deng L, Zhang N et al (2009) Photocatalytic degradation of C.I. Acid Blue 80 in aqueous suspensions of titanium dioxide under sunlight. React Kinet Catal Lett 98(2):227–240CrossRefGoogle Scholar
  50. 50.
    Byrappa K, Subramani AK, Ananda S et al (2006) Photocatalytic degradation of rhodamine B dye using hydrothermally synthesized ZnO. Bull Mater Sci 29(5):433–438CrossRefGoogle Scholar
  51. 51.
    Qamar M, Saquib M, Muneer M (2005) Photocatalytic degradation of two selected dye derivatives, chromotrope 2B and amido black 10B, in aqueous suspensions of titanium dioxide. Dyes Pigments 65(1):1–9CrossRefGoogle Scholar
  52. 52.
    Ahmed S (2011) Impact of operating conditions and recent developments in heterogeneous photocatalytic water purification process. Crit Rev Environ Sci Technol 42(6):601–675CrossRefGoogle Scholar
  53. 53.
    Chiou CH, Wu CY, Juang RS (2008) Photocatalytic degradation of phenol and m-nitrophenol using irradiated TiO2 in aqueous solutions. Sep Purif Technol 62(3):559–564CrossRefGoogle Scholar
  54. 54.
    Qamar M, Saquib M, Muneer M (2005) Semiconductor-mediated photocatalytic degradation of anazo dye, chrysoidine Y in aqueous suspensions. Desalination 171(2):185–193CrossRefGoogle Scholar
  55. 55.
    Zhou Y, Lu SX, Xu WG (2009) Photocatalytic activity of Nd-doped ZnO for the degradation of C.I. Reactive Blue 4 in aqueous suspension. Environ Prog Sustain Energy 28(2):226–233CrossRefGoogle Scholar
  56. 56.
    Parida KM, Sahu N (2008) Visible light induced photocatalytic activity of rare earth titania nanocomposites. J Mol Catal A Chem 287(1–2):151–158CrossRefGoogle Scholar
  57. 57.
    Anandan S, Kumar PS, Pugazhenthiran N et al (2008) Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of Acid Red 88. Sol Energy Mater Sol Cells 92(8):929–937CrossRefGoogle Scholar
  58. 58.
    Huang M, Xu C, Wu Z et al (2008) Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes Pigments 77(2):327–334CrossRefGoogle Scholar
  59. 59.
    Gupta AK, Pal A, Sahoo C (2006) Photocatalytic degradation of a mixture of Crystal Violet (Basic Violet 3) and Methyl Red dye in aqueous suspensions using Ag+ doped TiO2. Dyes Pigments 69(3):224–232CrossRefGoogle Scholar
  60. 60.
    Lin H, Li L, Zhao M (2012) Synthesis of high-quality brookite TiO2 single-crystalline nanosheets with specific facets exposed: tuning catalysts from inert to highly reactive. J Am Chem Soc 134(20):8328–8331CrossRefGoogle Scholar
  61. 61.
    Zuo F, Bozhilov K, Dillon RJ (2012) Active facets on titanium(III)-doped TiO2: an effective strategy to improve the visible-light photocatalytic activity. Angew Chem 124(25):6327–6330CrossRefGoogle Scholar
  62. 62.
    Li J, Xu J, Dai WL et al (2008) One-pot synthesis of twist-like helix tungsten-nitrogen-codoped titania photocatalysts with highly improved visible light activity in the abatement of phenol. Appl Catal B Environ 82(3):233–243CrossRefGoogle Scholar
  63. 63.
    Boarini P, Carassiti V, Maldotti A et al (1998) Photocatalytic oxygenation of cyclohexane on titanium dioxide suspensions: effect of the solvent and of oxygen. Langmuir 14(8):2080–2085CrossRefGoogle Scholar
  64. 64.
    Daneshvar N, Rasoulifard MH, Khataee AR (2007) Removal of C.I. Acid Orange 7 from aqueous solution by UV irradiation in the presence of ZnO nanopowder. J Hazard Mater 143(1–2):95–101CrossRefGoogle Scholar
  65. 65.
    Sobana N, Swaminathan M (2007) The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO. Sep Purif Technol 56(1):101–107CrossRefGoogle Scholar
  66. 66.
    Chiou CH, Juang RS (2007) Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles. J Hazard Mater 149(1):1–7CrossRefGoogle Scholar
  67. 67.
    An T, Liu J, Li G et al (2008) Structural and photocatalytic degradation characteristics of hydrothermally treated mesoporous TiO2. Appl Catal A Gen 350(2):237–243CrossRefGoogle Scholar
  68. 68.
    Ohtani B, Ogawa Y, Nishimoto SI (1997) Photocatalytic activity of amorphous−anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions. J Phys Chem B 101(19):3746–3752CrossRefGoogle Scholar
  69. 69.
    Gupta S, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56(16):1639–1657CrossRefGoogle Scholar
  70. 70.
    Hua DS, Kunfeng Z, Daorong L et al (2009) Synthesis, characterization and photocatalytic activity of Co2+ -doped titania. J Phys Conf Ser 188(1):012–018Google Scholar
  71. 71.
    Wang J, Zhao G, Zhang Z et al (2007) Investigation on degradation of azo fuchsine using visible light in the presence of heat-treated anatase TiO2 powder. Dyes Pigments 75(2):335–343CrossRefGoogle Scholar
  72. 72.
    Du Y, Du M, Qiao Y et al (2007) Ce(IV) doped TiO2 thin films: characterization and photocatalysis. Colloid J 69(6):695–699CrossRefGoogle Scholar
  73. 73.
    Chen Y, Zhang S, Yu Y et al (2008) Synthesis, characterization, and photocatalytic activity of N-doped TiO2 nanotubes. J Dispers Sci Technol 29(2):245–249CrossRefGoogle Scholar
  74. 74.
    Quan X, Tan H, Zhao Q et al (2007) Preparation of lanthanum-doped TiO2 photocatalysts by coprecipitation. J Mater Sci 42(15):6287–6296CrossRefGoogle Scholar
  75. 75.
    Xiao Q, Si Z, Yu Z et al (2008) Characterization and photocatalytic activity of Sm3+-doped TiO2 nanocrystalline prepared by low temperature combustion method. J Alloys Compd 450(1–2):426–431CrossRefGoogle Scholar
  76. 76.
    Yu H, Zheng X, Yin Z et al (2007) Preparation of nitrogen-doped TiO2 nanoparticle catalyst and its catalytic activity under visible light. Chin J Chem Eng 15(6):802–807CrossRefGoogle Scholar
  77. 77.
    Chen HW, Ku Y, Kuo YL (2007) Effect of Pt/TiO2 characteristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis. Water Res 41(10):2069–2078CrossRefGoogle Scholar
  78. 78.
    Saepurahman AMA, Chong FK (2010) Dual-effects of adsorption and photodegradation of methylene blue by tungsten-loaded titanium dioxide. Chem Eng J 158(3):418–425CrossRefGoogle Scholar
  79. 79.
    Chen C, Wang Z, Ruan S (2008) Photocatalytic degradation of C.I. Acid Orange 52 in the presence of Zn-doped TiO2 prepared by a stearic acid gel method. Dyes Pigments 77(1):204–209CrossRefGoogle Scholar
  80. 80.
    Gao B, Lim TM, Subagio DP et al (2010) Zr-doped TiO2 for enhanced photocatalytic degradation of bisphenol A. Appl Catal A Gen 375(1):107–115CrossRefGoogle Scholar
  81. 81.
    Sathish M, Viswanathan B, Viswanath RP (2007) Characterization and photocatalytic activity of N-doped TiO2 prepared by thermal decomposition of Ti–melamine complex. Appl Catal B Environ 74(3–4):307–312CrossRefGoogle Scholar
  82. 82.
    Sun CG, Tao L, Fan ML et al (2009) Replication route synthesis of mesoporous titanium–cobalt oxides and their photocatalytic activity in the degradation of methyl orange. Catal Lett 129(1–2):26–38CrossRefGoogle Scholar
  83. 83.
    Hong X, Wang Z, Cai W et al (2005) Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide. Chem Mater 17(6):1548–1552CrossRefGoogle Scholar
  84. 84.
    Ren G, Gao Y, Liu X et al (2010) Synthesis of high-activity F-doped TiO2 photocatalyst via a simple one-step hydrothermal process. Reac Kinet Mech Catal 100(2):487–497Google Scholar
  85. 85.
    Piszcz M, Tryba B, Grzmil B (2009) Photocatalytic removal of phenol under UV irradiation on WOx –TiO2 prepared by sol–gel method. Catal Lett 128(1–2):190–196CrossRefGoogle Scholar
  86. 86.
    Liu J, Qin W, Zuo S (2009) Solvothermal-induced phase transition and visible photocatalytic activity of nitrogen-doped titania. J Hazard Mater 163(1):273–278CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jinlong Zhang
    • 1
  • Baozhu Tian
    • 1
  • Lingzhi Wang
    • 1
  • Mingyang Xing
    • 1
  • Juying Lei
    • 1
  1. 1.Key Laboratory for Advanced Materials & Institute of Fine ChemicalsEast China University of Science & TechnologyShanghaiChina

Personalised recommendations