Neuroanesthesia and Coexisting Renal Problems

  • Nidhi Gupta
  • Shiwani Aggarwal
  • Vasudha Singhal


Both the brain and kidney share strong functional interdependence in health as well as in disease [1, 2]. Neurocritically ill patients are at a high risk of acute kidney injury (AKI) [3–7], while patients with acute renal insult, receiving renal replacement therapy (RRT), are susceptible to varied neurological complications requiring emergent neurosurgical interventions [8]. AKI is known to be an acute systemic disease with serious distant organ effects and progression to chronic kidney disease (CKD) with long-term morbidity and mortality [9–11]. Hence, successful management of AKI in patients with an injured brain requires an in-depth understanding of the fluid and electrolyte homeostasis, as well as appropriate modifications of RRT in the acute setting [12, 13].


  1. 1.
    Davenport A. The brain and the kidney-organ cross talk and interactions. Blood Purif. 2008;26:526–36.PubMedCrossRefGoogle Scholar
  2. 2.
    Nongnuch A, Panorchan K, Davenport A. Brain–kidney crosstalk. Crit Care. 2014;18:225.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Moore EM, Bellomo R, Nichol A, Harley N, Macisaac C, Cooper DJ. The incidence of acute kidney injury in patients with traumatic brain injury. Ren Fail. 2010;32(9):1060–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Ahmed M, Sriganesh K, Vinay B, Umamaheswara Rao GS. Acute kidney injury in survivors of surgery for severe traumatic brain injury: incidence, risk factors, and outcome from a tertiary neuroscience center in India. Br J Neurosurg. 2015;29(4):544–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Büttner S, Stadler A, Mayer C, et al. Incidence, risk factors, and outcome of acute kidney injury in neurocritical care. J Intensive Care Med. 2018;1:885066617748596. [Epub ahead of print]Google Scholar
  6. 6.
    Tujjar O, Belloni I, Hougardy JM, et al. Acute kidney injury after subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2017;29(2):140–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Mostofsky E, Wellenius GA, Noheria A, et al. Renal function predicts survival in patients with acute ischemic stroke. Cerebrovasc Dis. 2009;28(1):88–94.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Karunaratne K, Taube D, Khalil N, Perry R, Malhotra PA. Neurological complications of renal dialysis and transplantation. Pract Neurol. 2018;18(2):115–25.PubMedCrossRefGoogle Scholar
  9. 9.
    Yap SC, Lee HT. Acute kidney injury and extrarenal organ dysfunction: new concepts and experimental evidence. Anesthesiology. 2012;116:1139–48.PubMedCrossRefGoogle Scholar
  10. 10.
    Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK. Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J Am Soc Nephrol. 2015;26:1765–76.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Pourafkari L, Arora P, Porhomayon J, Dosluoglu HH, Arora P. Nader ND Acute kidney injury after non-cardiovascular surgery: risk factors and impact on development of chronic kidney disease and long-term mortality. Curr Med Res Opin. 2018;3:1–22. Epub ahead of printGoogle Scholar
  12. 12.
    Davenport A. Renal replacement therapy in the patient with acute brain injury. Am J Kidney Dis. 2001;37(3):457–66.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Davenport A. Changing the hemodialysis prescription for hemodialysis patients with subdural and intracranial hemorrhage. Hemodial Int. 2013;17(Suppl 1):S22–7.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Arnold R, Issar T, Krishnan AV, Pussell BA. Neurological complications in chronic kidney disease. JRSM Cardiovasc Dis. 2016;5:2048004016677687.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Schiffrin EL, Lipman ML, Mann JF. Chronic kidney disease: effects on the cardiovascular system. Circulation. 2007;116:85–97.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Mathew A, Devereaux PJ, O’Hare A, et al. Chronic kidney disease and postoperative mortality: a systematic review and meta-analysis. Kidney Int. 2008;73(9):1069–81.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    De la Garza Ramos R, Jain A, Nakhla J, et al. Postoperative morbidity and mortality after elective anterior cervical fusion in patients with chronic and end-stage renal disease. World Neurosurg. 2016;95:480–5.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–12.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1–138.CrossRefGoogle Scholar
  21. 21.
    National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(Suppl 2):S1–S266.Google Scholar
  22. 22.
    Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1–150.CrossRefGoogle Scholar
  23. 23.
    Inker LA, Astor BC, Fox CH, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis. 2014;63(5):713–35.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Just A. Mechanisms of renal blood flow autoregulation: dynamics and contributions. Am J Physiol Regul Integr Comp Physiol. 2007;292:R1–17.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kurella Tamura M, Wadley V, Yaffe K, et al. Kidney function and cognitive impairment in US adults: the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study. Am J Kidney Dis. 2008;52:227–34.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Ono M, Arnaoutakis GJ, Fine DM, et al. Blood pressure excursions below the cerebral autoregulation threshold during cardiac surgery are associated with acute kidney injury. Crit Care Med. 2013;41:464–71.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Dias C, Gaio AR, Monteiro E, et al. Kidney–brain link in traumatic brain injury patients? A preliminary report. Neurocrit Care. 2015;22:192–20.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Fang L, You H, Chen B, et al. Mannitol is an independent risk factor of acute kidney injury after cerebral trauma: a case control study. Ren Fail. 2010;32:673–9.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Salem S, Jankowski V, Asare Y, et al. Identification of the “vasoconstriction inhibiting factor” (VIF), a potent endogenous cofactor of angiotensin II acting on the AT2 receptor. Circulation. 2015;131:1426–34.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Kim MY, Park JH, Kang NR, et al. Increased risk of acute kidney injury associated with higher infusion rate of mannitol in patients with intracranial hemorrhage. J Neurosurg. 2014;120(6):1340–8.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Nomani AZ, Nabi Z, Rashid H, et al. Osmotic nephrosis with mannitol: review article. Ren Fail. 2014;36(7):1169–76.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Lin SY, Tang SC, Tsai LK, et al. Incidence and risk factors for acute kidney injury following mannitol infusion in patients with acute stroke: a retrospective cohort study. Medicine (Baltimore). 2015;94(47):e2032.CrossRefGoogle Scholar
  33. 33.
    Zeng J, Tong W, Zheng P. Decreased risk of acute kidney injury with intracranial pressure monitoring in patients with moderate or severe brain injury. J Neurosurg. 2013;119(5):1228–32.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Rabetoy GM, Fredrieks MR, Hostettler CF. Where the kidney is concerned, how much mannitol is too much. Ann Pharmacother. 1993;27:25–8.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Sadan O, Singbartl K, Kandiah PA, Martin KS, Samuels OB. Hyperchloremia is associated with acute kidney injury in patients with subarachnoid hemorrhage. Crit Care Med. 2017;45(8):1382–8.CrossRefGoogle Scholar
  36. 36.
    Kumar AB, Shi Y, Shotwell MS, Richards J, Ehrenfeld JM. Hypernatremia is a significant risk factor for acute kidney injury after subarachnoid hemorrhage: a retrospective analysis. Neurocrit Care. 2015;22(2):184–91.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Jiang S, Shen Y, Zhao X. Hyperchloremia is associated with acute kidney injury in patients with aneurysmal subarachnoid hemorrhage: not sure. Crit Care Med. 2017;45(10):e1099.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Kheterpal S, Tremper KK, Heung M, et al. Development and validation of an acute kidney injury risk index for patients undergoing general surgery: results from a national data set. Anesthesiology. 2009;110:505–15.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    McKinlay J, Tyson E, Forni LG. Renal complications of anaesthesia. Anaesthesia. 2018;73(Suppl 1):85–94.PubMedCrossRefGoogle Scholar
  40. 40.
    Abelha FJ, Botelho M, Fernandes V, Barros H. Determinants of postoperative acute kidney injury. Crit Care. 2009;13:R79.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Zhao XJ, Zhu FX, Li S, Zhang HB, An YZ. Acute kidney injury is an independent risk factor for myocardial injury after noncardiac surgery in critical patients. J Crit Care. 2017;39:225–31.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Quinn Timothy D, Brovman Ethan Y, Aglio Linda S, Urman Richard D. Factors associated with an increased risk of perioperative cardiac arrest in emergent and elective craniotomy and spine surgery. Clin Neurol Neurosurg. 2017;161:6–13.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Sun LY, Wijeysundera DN, Tait GA, Beattie WS. Association of intraoperative hypotension with acute kidney injury after elective noncardiac surgery. Anesthesiology. 2015;123:515–23.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Li N, Zhao WG, Xu FL, Zhang WF, Gu WT. Neutrophil gelatinase-associated lipocalin as an early marker of acute kidney injury in patients with traumatic brain injury. J Nephrol. 2013;26(6):1083–8.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Kashani K, Al-Khafaji A, Ardiles T, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013;17:R25.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Donnelly J, Budohoski KP, Smielewski P, Czosnyka M. Regulation of the cerebral circulation: bedside assessment and clinical implications. Crit Care. 2016;20(1):129.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Rossaint R, Bouillon B, Cerny V, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care. 2016;20:100.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Herrler T, Tischer A, Meyer A, et al. The intrinsic renal compartment syndrome: new perspectives in kidney transplantation. Transplantation. 2010;89(1):40–6.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308:1566–72.CrossRefGoogle Scholar
  50. 50.
    Roquilly A, Loutrel O, Cinotti R, et al. Balanced versus chloride-rich solutions for fluid resuscitation in brain-injured patients: a randomised double-blind pilot study. Crit Care. 2013;17(2):R77.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Young P, Bailey M, Beasley R, et al. SPLIT Investigators, ANZICS CTG. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. JAMA 2015;314(16):1701–10.CrossRefGoogle Scholar
  52. 52.
    Hafizah M, Liu CY, Ooi JS. Normal saline versus balanced-salt solution as intravenous fluid therapy during neurosurgery: effects on acid-base balance and electrolytes. J Neurosurg Sci. 2017;61:263–70.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Hassan MH, Hassan WMNW, Zaini RHM, Shukeri WFWM, Abidin HZ, Eu CS. Balanced fluid versus saline-based fluid in post-operative severe traumatic brain injury patients: acid-base and electrolytes assessment. Malays J Med Sci. 2017;24(5):83–93.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Wiedermann CJ, Dunzendorfer S, Gaioni LU, Zaraca F, Joannidis M. Hyperoncotic colloids and acute kidney injury: a meta-analysis of randomized trials. Crit Care. 2010;14(5):R191.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Myburgh JA, Finfer S, Bellomo R, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367(20):1901–11.CrossRefGoogle Scholar
  56. 56.
    Zarychanski R, Abou-Setta AM, Turgeon AF, et al. Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA. 2013;309(7):678–88.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    SAFE Study Investigators; Australian and New Zealand Intensive Care Society Clinical Trials Group; Australian Red Cross Blood Service; George Institute for International Health, Myburgh J, Cooper DJ, Finfer S, et al. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med. 2007;357(9):874–84.CrossRefGoogle Scholar
  58. 58.
    Teixeira C, Garzotto F, Piccinni P, et al. Fluid balance and urine volume are independent predictors of mortality in acute kidney injury. Crit Care. 2013;17:R14.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Zhao Z, Wang D, Jia Y, et al. Analysis of the association of fluid balance and short-term outcome in traumatic brain injury. J Neurol Sci. 2016;364:12–8.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    PRISM Investigators, Rowan KM, Angus DC, Bailey M, et al. Early, goal-directed therapy for septic shock — a patient-level meta-analysis. N Engl J Med. 2017;376:2223–34.CrossRefGoogle Scholar
  61. 61.
    Chou CY, Yeh HC, Chen W, et al. Norepinephrine and hospital mortality in critically ill patients undergoing continuous renal replacement therapy. Artif Organs. 2011;35:E11–7.PubMedGoogle Scholar
  62. 62.
    Bellomo R, Wan L, May C. Vasoactive drugs and acute kidney injury. Crit Care Med. 2008;36:S179–86.PubMedCrossRefGoogle Scholar
  63. 63.
    Uchino S, Doig GS, Bellomo R, et al., Beginning and Ending Supportive Therapy for the Kidney (B.E.S.T. Kidney) Investigators. Diuretics and mortality in acute renal failure. Crit Care Med 2004;32(8):1669–77Google Scholar
  64. 64.
    Ejaz AA, Mohandas R. Are diuretics harmful in the management of acute kidney injury? Curr Opin Nephrol Hypertens. 2014;23(2):155–60.PubMedCrossRefGoogle Scholar
  65. 65.
    Mehta RL, Pascual MT, Soroko S, Chertow GM, PICARD Study Group. Diuretics, mortality, and nonrecovery of renal function in acute renal failure. JAMA. 2002;288(20):2547–53.CrossRefGoogle Scholar
  66. 66.
    Yang B, Xu J, Xu F, et al. Intravascular administration of mannitol for acute kidney injury prevention: a systematic review and meta-analysis. PLoS One. 2014;9(1):e85029.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Tamma PD, Turnbull AE, Harris AD, Milstone AM, Hsu AJ, Cosgrove SE. Less is more: combination antibiotic therapy for the treatment of gram-negative bacteremia in pediatric patients. JAMA Pediatr. 2013;167:903–10.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Zarbock A, Kellum JA, Schmidt C, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with AKI: the ELAIN randomized clinical trial. JAMA. 2016;315:2190–9.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Gaudry S, Hajage D, Schortgen F, et al. Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med. 2016;375:122–33.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Biondi-Zoccai G, Lotrionte M, Thomsen HS, et al. Nephropathy after administration of iso-osmolar and low-osmolar contrast media: evidence from a network meta-analysis. Int J Cardiol. 2014;172(2):375–80.PubMedCrossRefGoogle Scholar
  71. 71.
    Han XF, Zhang XX, Liu KM, Tan H, Zhang Q. Contrast-induced nephropathy in patients with diabetes mellitus between iso- and low-osmolar contrast media: a meta-analysis of full-text prospective, randomized controlled trials. PLoS One. 2018;13(3):e0194330.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    John M. Eisenberg Center for Clinical Decisions and Communications Science. Contrast-Induced Nephropathy (CIN): Current State of the Evidence on Contrast Media and Prevention of CIN. Comparative effectiveness review summary guides for clinicians [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2007–2016 Aug 18.Google Scholar
  73. 73.
    Mamoulakis C, Tsarouhas K, Fragkiadoulaki I, et al. Contrast-induced nephropathy: basic concepts, pathophysiological implications and prevention strategies. Pharmacol Ther. 2017;180:99–112.PubMedCrossRefGoogle Scholar
  74. 74.
    Mehran R, Nikolsky E. Contrast-induced nephropathy: definition, epidemiology, and patients at risk. Kidney Int Suppl. 2006;100:S11–5.CrossRefGoogle Scholar
  75. 75.
    Chavakula V, Gross BA, Frerichs KU, Du R. Contrast-induced nephropathy in patients with aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2013;19(2):157–60.PubMedCrossRefGoogle Scholar
  76. 76.
    Brinjikji W, Demchuk AM, Murad MH, et al. Neurons over nephrons: systematic review and meta-analysis of contrast-induced nephropathy in patients with acute stroke. Stroke. 2017;48(7):1862–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Kim J, Male S, Jagadeesan BD, Streib C, Tummala RP. Safety of cerebral angiography and neuroendovascular therapy in patients with chronic kidney disease. Neuroradiology. 2018;60(5):529–33.PubMedCrossRefGoogle Scholar
  78. 78.
    McDonald RJ, McDonald JS, Bida JP, et al. Intravenous contrast material-induced nephropathy: causal or coincident phenomenon? Radiology. 2013;267(1):106–18.PubMedCrossRefGoogle Scholar
  79. 79.
    Azzalini L, Candilio L, McCullough PA, Colombo A. Current risk of contrast-induced acute kidney injury after coronary angiography and intervention: a reappraisal of the literature. Can J Cardiol. 2017;33(10):1225–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Su X, Xie X, Liu L, et al. Comparative effectiveness of 12 treatment strategies for preventing contrast-induced acute kidney injury: a systematic review and Bayesian network meta-analysis. Am J Kidney Dis. 2017;69(1):69–77.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Ma WQ, Zhao Y, Wang Y, Han XQ, Zhu Y, Liu NF. Comparative efficacy of pharmacological interventions for contrast-induced nephropathy prevention after coronary angiography: a network meta-analysis from randomized trials. Int Urol Nephrol. 2018;50(6):1085–95.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Mattathil S, Ghumman S, Weinerman J, Prasad A. Use of the RenalGuard system to prevent contrast-induced AKI: a meta-analysis. J Interv Cardiol. 2017;30(5):480–7.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Kassis HM, Minsinger KD, McCullough PA, Block CA, Sidhu MS, Brown JR. A review of the use of Iloprost, a synthetic prostacyclin, in the prevention of radiocontrast nephropathy in patients undergoing coronary angiography and intervention. Clin Cardiol. 2015;38(8):492–8.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Dai B, Liu Y, Fu L, Li Y, Zhang J, Mei C. Effect of theophylline on prevention of contrast-induced acute kidney injury: a meta-analysis of randomized controlled trials. Am J Kidney Dis. 2012;60(3):360–70.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Albabtain MA, Almasood A, Alshurafah H, Alamri H, Tamim H. Efficacy of ascorbic acid, N-acetylcysteine, or combination of both on top of saline hydration versus saline hydration alone on prevention of contrast induced nephropathy: a prospective randomized study. J Interv Cardiol. 2013;26(1):90–6.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Ibrahim TA, El-Mawardy RH, El-Serafy AS, El-Fekky EM. Trimetazidine in the prevention of contrast-induced nephropathy in chronic kidney disease. Cardiovasc Revasc Med. 2017;18(5):315–9.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Long B, Koyfman A, Lee CM. Emergency medicine evaluation and management of the end stage renal disease patient. Am J Emerg Med. 2017;35(12):1946–55.PubMedCrossRefGoogle Scholar
  88. 88.
    Babb AL, Ahmad S, Bergström J, et al. The middle molecule hypothesis in perspective. Am J Kidney Dis. 1981;1:46–50.PubMedCrossRefGoogle Scholar
  89. 89.
    Sood P, Sinson GP, Cohen EP. Subdural hematomas in chronic dialysis patients: significant and increasing. Clin J Am Soc Nephrol. 2007;2:956–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Neumann HP, Malinoc A, Bacher J, et al. Characteristics of intracranial aneurysms in the else kröner-fresenius registry of autosomal dominant polycystic kidney disease. Cerebrovasc Dis Extra. 2012;2:71–9.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Kawamura M, Fijimoto S, Hisanaga S, Yamamoto Y, Eto T. Incidence, outcome, and risk factors of cerebrovascular events in patients undergoing maintenance hemodialysis. Am J Kidney Dis. 1998;31:991–6.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Iseki K, Fukiyama K. Clinical demographics and long-term prognosis after stroke in patients on chronic haemodialysis. The Okinawa Dialysis Study (OKIDS) Group. Nephrol Dial Transplant. 2000;15:2008–13.CrossRefGoogle Scholar
  93. 93.
    Sozio SM, Armstrong PA, Coresh J, et al. Cerebrovascular disease incidence, characteristics, and outcomes in patients initiating dialysis: the choices for healthy outcomes in caring for ESRD (CHOICE) study. Am J Kidney Dis. 2009;54:468–77.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Winkelmayer WC, Liu J, Setoguchi S, Choudhry NK. Effectiveness and safety of warfarin initiation in older hemodialysis patients with incident atrial fibrillation. Clin J Am Soc Nephrol. 2011;6:2662–8.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Kumar A, Cage A, Dhar R. Dialysis-induced worsening of cerebral edema in intracranial hemorrhage: a case series and clinical perspective. Neurocrit Care. 2015;22(2):283–7.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Lopez-Almaraz E, Correa-Rotter R. Dialysis disequilibrium syndrome and other treatment complications of extreme uremia: a rare occurrence yet not vanished. Hemodial Int. 2008;12:301–6.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Rabindranath K, Adams J, Macleod AM, Muirhead N. Intermittent versus continuous renal replacement therapy for acute renal failure in adults. Cochrane Database Syst Rev 2007(3):CD003773.
  98. 98.
    Osgood M, Muehlschlegel S. Should continuous venovenous hemofiltration always be the preferred mode of renal replacement therapy for the patient with acute brain injury? Yes. Chest. 2017;152(6):1109–11.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Osgood M, Compton R, Carandang R, Hall W, Kershaw G, Muehlschlegel S. Rapid unexpected brain herniation in association with renal replacement therapy in acute brain injury: caution in the neurocritical care unit. Neurocrit Care. 2015;22(2):176–83.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Davenport A. Intradialytic complications during hemodialysis. Hemodial Int. 2006;10:162–7.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Davenport A. Continuous vs intermittent forms of haemofiltration and/or dialysis in management of acute renal failure with defective cerebral autoregulation at risk of cerebral oedema. Contrib Nephrol. 1991;93:225–33.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Davenport A. Practical guidance for dialyzing a hemodialysis patient following acute brain injury. Hemodial Int. 2008;12(3):307–12.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Zhang L, Yang J, Eastwood GM, Zhu G, Tanaka A, Bellomo R. Extended daily dialysis versus continuous renal replacement therapy for acute kidney injury: a metaanalysis. Am J Kidney Dis. 2015;66(2):322–30.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Jörres A, John S, Lewington A, et al. A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: Part 2: Renal replacement therapy. Nephrol Dial Transplant. 2013;28(12):2940–5.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Shoji T, Tsubakihara Y, Fujii M, et al. Hemodialysis-associated hypotension as an independent risk factor for two-year mortality in hemodialysis patients. Kidney Int. 2004;66(3):1212–20.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Masson P, Webster AC, Hong M, Turner R, Lindley RI, Craig JC. Chronic kidney disease and the risk of stroke: a systematic review and meta-analysis. Nephrol Dial Transplant. 2015;30(7):1162–9.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Roth C, Ferbert A. The posterior reversible encephalopathy syndrome: what’s certain, what’s new? Pract Neurol. 2011;11:136–44.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Jung JM, Kim HJ, Ahn H, et al. Chronic kidney disease and intravenous thrombolysis in acute stroke: a systematic review and metaanalysis. J Neurol Sci. 2015;358(1–2):345–50.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Thermann F, Kornhuber M. Ischemic monomelic neuropathy: a rare but important complication after hemodialysis access placement--a review. J Vasc Access. 2011;12(2):113–9.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Arnold R, Pussell BA, Howells J, et al. Evidence for a causal relationship between hyperkalaemia and axonal dysfunction in end-stage kidney disease. Clin Neurophysiol. 2014;125:179–85.PubMedCrossRefGoogle Scholar
  111. 111.
    Chan KE, Ikizler TA, Gamboa JL, et al. Combined angiotensin-converting enzyme inhibition and receptor blockade associate with increased risk of cardiovascular death in hemodialysis patients. Kidney Int. 2011;80:978–85.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Matsue Y, Suzuki M, Nagahori W, et al. Beta-blocker prevents sudden cardiac death in patients with hemodialysis. Int J Cardiol. 2013;165:519–22.PubMedCrossRefGoogle Scholar
  113. 113.
    Curtis BM, Parfrey PS. Congestive heart failure in chronic kidney disease: disease-specific mechanisms of systolic and diastolic heart failure and management. Cardiol Clin. 2005;23(3):275–84.PubMedCrossRefGoogle Scholar
  114. 114.
    Wang AY, Lam CW, Chan IH, et al. Sudden cardiac death in end-stage renal disease patients: a 5-year prospective analysis. Hypertension. 2010;56(2):210–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Yigla M, Fruchter O, Aharonson D, et al. Pulmonary hypertension is an independent predictor of mortality in hemodialysis patients. Kidney Int. 2009;75:969–75.PubMedCrossRefGoogle Scholar
  116. 116.
    McClellan W, Aronoff SL, Bolton WK, et al. The prevalence of anemia in patients with chronic kidney disease. Curr Med Res Opin. 2004;20:1501–10.PubMedCrossRefGoogle Scholar
  117. 117.
    Kaw D, Malhotra D. Platelet dysfunction and end-stage renal disease. Semin Dial. 2006;19(4):317–22.PubMedCrossRefGoogle Scholar
  118. 118.
    Mercier E, Branger B, Vecina F, et al. Tissue factor coagulation pathway and blood cells activation state in renal insufficiency. Hematol J. 2001;2(1):18–25.PubMedCrossRefGoogle Scholar
  119. 119.
    Dagher GA, Harmouche E, Jabbour E, et al. Sepsis in hemodialysis patients. BMC Emerg Med. 2015;15:30.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Davison SN. Pain in hemoalysis patients: prevalence, cause, severity, and management. Am J Kidney Dis. 2003;42(6):1239–47.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Lee TH, Marcantonio ER, Mangione CM, et al. Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. Circulation. 1999;100:1043–9.CrossRefGoogle Scholar
  122. 122.
    Ferguson TW, Komenda P, Tangri N. Cystatin C as a biomarker for estimating glomerular filtration rate. Curr Opin Nephrol Hypertens. 2015;24(3):295–300.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    De Vriese AS, Vandecasteele SJ, Van den Bergh B, et al. Should we screen for coronary artery disease in asymptomatic chronic dialysis patients? Kidney Int. 2012;81(2):143–51.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Stacy SR, Suarez-Cuervo C, Berger Z, et al. Role of troponin in patients with chronic kidney disease and suspected acute coronary syndrome: a systematic review. Ann Intern Med. 2014;161:502.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Breidthardt T, Kalbermatter S, Socrates T, et al. Increasing B-type natriuretic peptide levels predict mortality in unselected haemodialysis patients. Eur J Heart Fail. 2011;13(8):860–7.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Renew JR, Pai SL. A simple protocol to improve safety and reduce cost in hemodialysis patients undergoing elective surgery. Middle East J Anaesthesiol. 2014;22(5):487–92.PubMedGoogle Scholar
  127. 127.
    Kidney Disease: Improving Global Outcomes (KDIGO) Anemia Work Group. KDIGO clinical practice guideline for anemia in chronic kidney disease. Kidney Int Suppl. 2012;2:279–335.CrossRefGoogle Scholar
  128. 128.
    Casserly LF, Dember LM. Thrombosis in end-stage renal disease. Semin Dial. 2003;16(3):245–56.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Zhu X, Perazella MA. Nonhematologic complications of erythropoietin therapy. Semin Dial. 2006;19(4):279–84.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Rahbar M, Chitsazian Z, Abdoli F, Moeini Taba SM, Akbari H. Pure red cell aplasia due to antibody against erythropoietin in hemodialysis patients. J Nephropathol. 2017;6(1):25–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Badenes R, Oddo M, Suarez JI, et al. Hemoglobin concentrations and RBC transfusion thresholds in patients with acute brain injury: an international survey. Crit Care. 2017;21(1):159.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Christensen JH, Andreasen F, Jansen J. Pharmacokinetics and pharmacodynamics of thiopental in patients undergoing renal transplantation. Acta Anaesthesiol Scand. 1983;27(6):513–8.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Takizawa D, Hiraoka H, Goto F, et al. Human kidneys play an important role in the elimination of propofol. Anesthesiology. 2005;102(2):327–30.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    De Wolf AM, Fragen RJ, Avram MJ, et al. The pharmacokinetics of dexmedetomidine in volunteers with severe renal impairment. Anesth Analg. 2001;93(5):1205–9.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Swart EL, Zuideveld KP, de Jongh J, Danhof M, Thijs LG, Strack van Schijndel RM. Comparative population pharmacokinetics of lorazepam and midazolam during long-term continuous infusion in critically ill patients. Br J Clin Pharmacol. 2004;57(2):135–45.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Litz RJ, Hubler M, Lorenz W, et al. Renal responses to desflurane and isoflurane in patients with renal insufficiency. Anesthesiology. 2002;97:1133–6.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Mazze RI, Callan CM, Galvez ST, et al. The effects of sevoflurane on serum creatinine and blood urea nitrogen concentrations: a retrospective, twenty-two-center, comparative evaluation of renal function in adult surgical patients. Anesth Analg. 2000;90:683–8.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Thapa S, Brull SJ. Succinylcholine-induced hyperkalemia in patients with renal failure: an old question revisited. Anesth Analg. 2000;91:237–41.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Webb MD. Type I second-degree AV block after neostigmine administration in a child with renal failure. Anesth Prog. 1995;42(1):21–2.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Panhuizen IF, Gold SJ, Buerkle C, et al. Efficacy, safety and pharmacokinetics of sugammadex 4 mg kg-1 for reversal of deep neuromuscular blockade in patients with severe renal impairment. Br J Anaesth. 2015;114(5):777–84.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Mallappallil M, Sabu J, Friedman EA, Salifu M. What do we know about opioids and the kidney? Int J Mol Sci 2017;18(1). pii: E223.Google Scholar
  142. 142.
    Kurella M, Bennett WM, Chertow GM. Analgesia in patients with ESRD: a review of available evidence. Am J Kidney Dis. 2003;42(2):217–28.PubMedCrossRefGoogle Scholar
  143. 143.
    Breen D, Wilmer A, Bodenham A, et al. Offset of pharmacodynamic effects and safety of remifentanil in intensive care unit patients with various degrees of renal impairment. Crit Care. 2004;8(1):R21–30.PubMedCrossRefGoogle Scholar
  144. 144.
    Dahaba AA, Oettl K, Von Klobucar F, et al. End-stage renal failure reduces central clearance and prolongs the elimination half life of remifentanil. Can J Anaesth. 2002;49:369–74.PubMedCrossRefGoogle Scholar
  145. 145.
    Brune K, Renner B, Tiegs G. Acetaminophen/paracetamol: a history of errors, failures and false decisions. Eur J Pain. 2015;19(7):953–65.PubMedCrossRefGoogle Scholar
  146. 146.
    Roberts E, Delgado Nunes V, Buckner S, et al. Paracetamol: not as safe as we thought? A systematic literature review of observational studies. Ann Rheum Dis. 2016;75(3):552–9.PubMedCrossRefGoogle Scholar
  147. 147.
    Schneider V, Levesque LE, Zhang B, et al. Association of selective and conventional nonsteroidal antiinflammatory drugs with acute renal failure: a population-based, nested case-control analysis. Am J Epidemiol. 2006;164:881–9.PubMedCrossRefGoogle Scholar
  148. 148.
    Chang YK, Liu JS, Hsu YH, et al. Increased risk of end-stage renal disease (ESRD) requiring chronic dialysis is associated with use of nonsteroidal anti-inflammatory drugs (NSAIDs). Medicine (Baltimore). 2015;94(38):e1362.CrossRefGoogle Scholar
  149. 149.
    Kidney Disease: Improving Global Outcomes (KDIGO) Blood Pressure Work Group. KDIGO clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney Int Suppl. 2012;2:337–414.CrossRefGoogle Scholar
  150. 150.
    Wilcox CS. New insights into diuretic use in patients with chronic renal disease. J Am Soc Nephrol. 2002;13(3):798–805.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Khan YH, Sarriff A, Adnan AS, Khan AH, Mallhi TH. Chronic kidney disease, fluid overload and diuretics: a complicated triangle. PLoS One. 2016;11(7):e0159335.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Dorman HR, Sondheimer JH, Cadnapaphornchai P. Mannitol-induced acute renal failure. Medicine (Baltimore). 1990;69(3):153–9.CrossRefGoogle Scholar
  153. 153.
    Hirsch KG, Spock T, Koenig MA, Geocadin RG. Treatment of elevated intracranial pressure with hyperosmolar therapy in patients with renal failure. Neurocrit Care. 2012;17(3):388–94.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Wilbur J, Shian B. Deep venous thrombosis and pulmonary embolism: current therapy. Am Fam Physician. 2017;95(5):295–302.PubMedPubMedCentralGoogle Scholar
  155. 155.
    Frydman A. Low-molecular-weight heparins: an overview of their pharmacodynamics, pharmacokinetics and metabolism in humans. Haemostasis. 1996;26(Suppl 2):24–38.PubMedPubMedCentralGoogle Scholar
  156. 156.
    Lim W, Dentali F, Eikelboom JW, Crowther MA. Meta-analysis: low molecular- weight heparin and bleeding in patients with severe renal insufficiency. Ann Intern Med. 2006;144:673–84.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Park D, Southern W, Calvo M, et al. Treatment with dalteparin is associated with a lower risk of bleeding compared to treatment with unfractionated heparin in patients with renal insufficiency. J Gen Intern Med. 2016;31(2):182–7.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Lazrak HH, René É, Elftouh N, Leblanc M, Lafrance JP. Safety of low-molecular-weight heparin compared to unfractionated heparin in hemodialysis: a systematic review and meta-analysis. BMC Nephrol. 2017;18(1):187.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Kessler M, Moureau F, Nguyen P. Anticoagulation in chronic hemodialysis: progress toward an optimal approach. Semin Dial. 2015;28(5):474–89.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Duranteau J, Taccone FS, Verhamme P, Ageno W, ESA VTE Guidelines Task Force. European guidelines on perioperative venous thromboembolism prophylaxis: intensive care. Eur J Anaesthesiol. 2018;35(2):142–6.PubMedPubMedCentralGoogle Scholar
  161. 161.
    Szummer K, Gasparini A, Eliasson S, et al. Time in therapeutic range and outcomes after warfarin initiation in newly diagnosed atrial fibrillation patients with renal dysfunction. J Am Heart Assoc. 2017;6(3):e004925.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Dahal K, Kunwar S, Rijal J, Schulman P, Lee J. Stroke, major bleeding, and mortality outcomes in warfarin users with atrial fibrillation and chronic kidney disease: a meta-analysis of observational studies. Chest. 2016;149(4):951–9.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Harel Z, Chertow GM, Shah PS, et al. Warfarin and the risk of stroke and bleeding in patients with atrial fibrillation receiving dialysis: a systematic review and meta-analysis. Can J Cardiol. 2017;33(6):737–46.PubMedCrossRefGoogle Scholar
  164. 164.
    Nielsen PB, Lane DA, Rasmussen LH, Lip GY, Larsen TB. Renal function and non-vitamin K oral anticoagulants in comparison with warfarin on safety and efficacy outcomes in atrial fibrillation patients: a systemic review and meta-regression analysis. Clin Res Cardiol. 2015;104(5):418–29.CrossRefGoogle Scholar
  165. 165.
    Heidbuchel H, Verhamme P, Alings M, et al. Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non-valvular atrial fibrillation. Europace. 2015;17(10):1467–507.CrossRefGoogle Scholar
  166. 166.
    Kimachi M, Furukawa TA, Kimachi K, Goto Y, Fukuma S, Fukuhara S. Direct oral anticoagulants versus warfarin for preventing stroke and systemic embolic events among atrial fibrillation patients with chronic kidney disease. Cochrane Database Syst Rev 2017;(11):CD011373.Google Scholar
  167. 167.
    Bansal AD, Hill CE, Berns JS. Use of antiepileptic drugs in patients with chronic kidney disease and end stage renal disease. Semin Dial. 2015;28(4):404–12.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Al-mustafa MM, Massad I, Alsmady M, et al. The effect of low serum bicarbonate values on the onset of action of local anesthesia with vertical infraclavicular brachial plexus block in patients with end-stage renal failure. Saudi J Kidney Dis Transpl. 2010;21(3):494–500.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Ickx B, Cockshott ID, Barvais L, et al. Propofol infusion for induction and maintenance of anaesthesia in patients with end-stage renal disease. Br J Anaesth. 1998;81(6):854–60.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Wu X, Zhang W, Ren H, et al. Diuretics associated acute kidney injury: clinical and pathological analysis. Ren Fail. 2014;36:1051–5.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Luo J, Xue J, Liu J, Liu B, Liu L, Chen G. Goal-directed fluid restriction during brain surgery: a prospective randomized controlled trial. Ann Intensive Care. 2017;7(1):16.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Kanda H, Hirasaki Y, Iida T, et al. Perioperative management of patients with end-stage renal disease. J Cardiothorac Vasc Anesth. 2017;31(6):2251–67.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Lan H, Zhou X, Xue J, Liu B, Chen G. The ability of left ventricular end-diastolic volume variations measured by TEE to monitor fluid responsiveness in high-risk surgical patients during craniotomy: a prospective cohort study. BMC Anesthesiol. 2017;17(1):165.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Chemtob RA, Eskesen TG, Moeller-Soerensen H, et al. Systematic review of the association of venous oxygenation and outcome in adult hospitalized patients. Acta Anaesthesiol Scand. 2016;60(10):1367–78.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Taler SJ, Agarwal R, Bakris GL, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for management of blood pressure in CKD. Am J Kidney Dis. 2013;62(2):201–13.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    McMurray JJ, Adamopoulos S, Anker SD, et al., ESC Committee for Practice Guidelines. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2012;14(8):803–69.Google Scholar
  177. 177.
    Galbusera M, Remuzzi G, Boccardo P. Treatment of bleeding in dialysis patients. Semin Dial. 2009;22(3):279–86.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Naidech AM, Maas MB, Levasseur-Franklin KE, et al. Desmopressin improves platelet activity in acute intracerebral hemorrhage. Stroke. 2014;45(8):2451–3.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Vujkovac B, Sabovic M. Treatment of subdural and intracerebral haematomas in a haemodialysis patient with tranexamic acid. Nephrol Dial Transplant. 2000;15:107–9.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Kalantar-Zadeh K, Derose SF, Nicholas S, et al. Burnt-out diabetes: impact of chronic kidney disease progression on the natural course of diabetes mellitus. J Ren Nutr. 2009;19(1):33–7.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Betônico CC, Titan SM, Correa-Giannella ML, Nery M, Queiroz MS. Management of diabetes mellitus in individuals with chronic kidney disease: therapeutic perspectives and glycemic control. Clinics. 2016;71(1):47–53.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Carman TL, Kanner AA, Barnett GH, et al. Prevention of thromboembolism after neurosurgery for brain and spinal tumors. South Med J. 2003;96:17–22.PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Smith TR, Nanney AD III, Lall RR, et al. Development of venous thromboembolism (VTE) in patients undergoing surgery for brain tumors: results from a single center over a 10 year period. J Clin Neurosci. 2015;22(3):519–25.PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Denson K, Morgan D, Cunningham R, et al. Incidence of venous thromboembolism in patients with traumatic brain injury. Am J Surg. 2007;193:380–3.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Skaf E, Stein PD, Beemath A, Sanchez J, Bustamante MA, Olson RE. Venous thromboembolism in patients with ischemic and hemorrhagic stroke. Am J Cardiol. 2005;96(12):1731–3.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Kshettry VR, Rosenbaum BP, Seicean A, Kelly ML, Schiltz NK, Weil RJ. Incidence and risk factors associated with in hospital venous thromboembolism after aneurysmal subarachnoid hemorrhage. J Clin Neurosci. 2014;21(2):282–6.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Faraoni D, Comes RF, Geerts W, Wiles MD, ESA VTE Guidelines Task Force. European guidelines on perioperative venous thromboembolism prophylaxis: neurosurgery. Eur J Anaesthesiol. 2018;35(2):90–5.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Nidhi Gupta
    • 1
  • Shiwani Aggarwal
    • 2
  • Vasudha Singhal
    • 3
  1. 1.Department of NeuroanaesthesiaIndraprastha Apollo HospitalNew DelhiIndia
  2. 2.Max Superspeciality HospitalGhaziabadIndia
  3. 3.Department of Neuroanesthesiology and Neurocritical CareMedanta, The MedicityGurugramIndia

Personalised recommendations