Advertisement

Advances in Penetrating Multichannel Microelectrodes Based on the Utah Array Platform

  • Moritz LeberEmail author
  • Julia Körner
  • Christopher F. Reiche
  • Ming Yin
  • Rajmohan Bhandari
  • Robert Franklin
  • Sandeep Negi
  • Florian SolzbacherEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1101)

Abstract

The Utah electrode array (UEA) and its many derivatives have become a gold standard for high-channel count bi-directional neural interfaces, in particular in human subject applications. The chapter provides a brief overview of leading electrode concepts and the context in which the UEA has to be understood. It goes on to discuss the key advances and developments of the UEA platform in the past 15 years, as well as novel wireless and system integration technologies that will merge into future generations of fully integrated devices. Aspects covered include novel device architectures that allow scaling of channel count and density of electrode contacts, material improvements to substrate, electrode contacts, and encapsulation. Further subjects are adaptations of the UEA platform to support IR and optogenetic simulation as well as an improved understanding of failure modes and methods to test and accelerate degradation in vitro such as to better predict device failure and lifetime in vivo.

Keywords

Utah electrode array (UEA) Neural interface materials Wireless technology Accelerated aging Advanced system integration 

References

  1. 1.
    Abaya TVF et al (2012) 3D waveguide penetrating arrays for optical neural stimulation. In: 2012 international conference on optical MEMS and nanophotonics. IEEE, pp 216–217Google Scholar
  2. 2.
    Abaya TVF et al (2014) Deep-tissue light delivery via optrode arrays. J Biomed Opt 19(1):15006PubMedCrossRefGoogle Scholar
  3. 3.
    Abdo A et al (2011) Floating light-activated microelectrical stimulators tested in the rat spinal cord. J Neural Eng 8(5):56012CrossRefGoogle Scholar
  4. 4.
    Abdulagatov AI et al (2011) Al2O3 and TiO2 atomic layer deposition on copper for water corrosion resistance. ACS Appl Mater Interfaces 3(12):4593–4601PubMedCrossRefGoogle Scholar
  5. 5.
    Adamantidis AR et al (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450(7168):420–424PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Aravanis AM et al (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4(3):S143–S156PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Badwey JA, Karnovsky ML (1980) Active oxygen species and the functions of phagocytic leucocytes. Annu Rev Biochem 49:695–726PubMedCrossRefGoogle Scholar
  8. 8.
    Bajaj P et al (2007) Ultrananocrystalline diamond film as an optimal cell interface for biomedical applications. Biomed Microdevices 9(6):787–794PubMedCrossRefGoogle Scholar
  9. 9.
    Barrese JC et al (2013) Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. J Neural Eng 10(6):66014CrossRefGoogle Scholar
  10. 10.
    Bhandari R et al (2008) A novel method of fabricating convoluted shaped electrode arrays for neural and retinal prostheses. Sensors Actuators A Phys 145–146:123–130CrossRefGoogle Scholar
  11. 11.
    Bhandari R et al (2009) Wafer-scale processed, low impedance, neural arrays with varying length microelectrodes. In: TRANSDUCERS 2009–2009 international solid-state sensors, actuators and microsystems conference. IEEE, pp 1210–1213Google Scholar
  12. 12.
    Biederman W et al (2013) A fully-integrated, miniaturized (0.125 mm2) 10.5 μW wireless neural sensor. IEEE J Solid State Circuits 48(4):960–970CrossRefGoogle Scholar
  13. 13.
    Blackrock Microsystems (2018a) CerePlex Exilis. Available at: http://blackrockmicro.com/cereplex-exilis/. Accessed 27 June 2018
  14. 14.
    Blackrock Microsystems (2018b) Cereplex W. Available at: http://blackrockmicro.com/cereplex-wireless-headstage/. Accessed 27 June 2018
  15. 15.
    Bolzan AE et al (1988) Smooth and rough platinum deposits resulting from the electroreduction of hydrous oxide platinum overlayers—a mechanistic approach. Electrochim Acta 33(12):1743–1751CrossRefGoogle Scholar
  16. 16.
    Borton DA et al (2013) An implantable wireless neural interface for recording cortical circuit dynamics in moving primates. J Neural Eng 10(2):26010CrossRefGoogle Scholar
  17. 17.
    Boutte RW, Blair S (2016) Maskless wafer-level microfabrication of optical penetrating neural arrays out of soda-lime glass: Utah optrode array. Biomed Microdevices 18(6):115PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Branner A, Stein RB, Normann RA (2001) Selective stimulation of cat sciatic nerve using an Array of varying-length microelectrodes. J Neurophysiol 85(4):1585–1594PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Buzsáki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7(5):446–451PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Caldwell RB (2017) Strategies towards the mitigation of shunting in implanted neural arrays to improve device stability for chronic applications (Order No. 10688653). Available from ProQuest Dissertations & Theses Global. (2189849447)Google Scholar
  21. 21.
    Caldwell R et al (2017) Analysis of Al2O3 —parylene C bilayer coatings and impact of microelectrode topography on long term stability of implantable neural arrays. J Neural Eng 14(4):46011CrossRefGoogle Scholar
  22. 22.
    Campbell PK et al (1991) A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans Biomed Eng 38(8):758–768PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Castagnola E et al (2014) Smaller, softer, lower-impedance electrodes for human neuroprosthesis: a pragmatic approach. Front Neuroeng 7:8PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Chestek CA et al (2009) HermesC: low-power wireless neural recording system for freely moving Primates. IEEE Trans Neural Syst Rehabil Eng 17(4):330–338PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Cheung K (2007) Implantable microscale neural interfaces. Biomed Microdevices 9(6):923–938PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Cho I-J, Baac HW, Yoon E (2010) A 16-site neural probe integrated with a waveguide for optical stimulation. In: 2010 IEEE 23rd international conference on micro electro mechanical systems (MEMS). IEEE, pp 995–998Google Scholar
  27. 27.
    Clark GA et al Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular utah slanted optrode arrays. In Photonic Therapeutics and Diagnostics VIII (Vol. 8207, p. 82075I). International Society for Optics and PhotonicsGoogle Scholar
  28. 28.
    Cogan SF (2008) Neural stimulation and recording electrodes. Annu Rev Biomed Eng 10:275–309PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Cogan SF et al (2003) Plasma-enhanced chemical vapor deposited silicon carbide as an implantable dielectric coating. J Biomed Mater Res 67A(3):856–867CrossRefGoogle Scholar
  30. 30.
    Cogan SF et al (2016) Tissue damage thresholds during therapeutic electrical stimulation. J Neural Eng 13(2):21001CrossRefGoogle Scholar
  31. 31.
    Collinger JL et al (2013) High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381(9866):557–564PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Davis TS et al (2016) Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves. J Neural Eng 13(3):36001CrossRefGoogle Scholar
  33. 33.
    Denison T et al (2007) A 2 uW 100 nV/rtHz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials. IEEE J Solid State Circuits 42(12):2934–2945CrossRefGoogle Scholar
  34. 34.
    Drake KL et al (1988) Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. IEEE Trans Biomed Eng 35(9):719–732PubMedCrossRefGoogle Scholar
  35. 35.
    Ersen A et al (2015) Chronic tissue response to untethered microelectrode implants in the rat brain and spinal cord. J Neural Eng 12(1):16019CrossRefGoogle Scholar
  36. 36.
    Fortin JB, Lu T-M (2004) Chemical vapor deposition polymerization: the growth and properties of parylene thin films. Kluwer Academic Publishers, BostonCrossRefGoogle Scholar
  37. 37.
    Foster DJ et al (2014) A freely-moving monkey treadmill model. J Neural Eng 11(4):46020CrossRefGoogle Scholar
  38. 38.
    Franks W et al (2005) Impedance characterization and modeling of electrodes for biomedical applications. IEEE Trans Biomed Eng 52(7):1295–1302PubMedCrossRefGoogle Scholar
  39. 39.
    Gradinaru V et al (2007) Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci 27(52):14231–14238PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Green RA et al (2012) Variation in performance of platinum electrodes with size and surface roughness. Sens Mater 24(4):165–180Google Scholar
  41. 41.
    Green RA et al (2014) Laser patterning of platinum electrodes for safe neurostimulation. J Neural Eng 11(5):56017CrossRefGoogle Scholar
  42. 42.
    Greenwald E et al (2011) A VLSI neural monitoring system with ultra-wideband telemetry for awake behaving subjects. IEEE Trans Biomed Circuits Syst 5(2):112–119PubMedCrossRefGoogle Scholar
  43. 43.
    Hämmerle H et al (2002) Biostability of micro-photodiode arrays for subretinal implantation. Biomaterials 23(3):797–804PubMedCrossRefGoogle Scholar
  44. 44.
    Harrison RR et al (2011) Wireless neural/EMG telemetry Systems for Small Freely Moving Animals. IEEE Trans Biomed Circuits Syst 5(2):103–111PubMedCrossRefGoogle Scholar
  45. 45.
    Hassler C et al (2010) Characterization of parylene C as an encapsulation material for implanted neural prostheses. J Biomed Mater Res B Appl Biomater 9999B(1):266–274Google Scholar
  46. 46.
    Hemmerich KJ (1998) General aging theory and simplified protocol for accelerated aging of medical devices. Med Plast Biomaterials 5:16–23Google Scholar
  47. 47.
    Hochberg LR et al (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164–171PubMedCrossRefGoogle Scholar
  48. 48.
    Hochberg LR et al (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398):372–375PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Hsu J-M et al (2007) Characterization of a-SiCx:H thin films as an encapsulation material for integrated silicon based neural interface devices. Thin Solid Films 516(1):34–41PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hsu JM et al (2008) Effect of thermal and deposition processes on surface morphology, crystallinity, and adhesion of Parylene-C. Sens Mater 20(2):87–102Google Scholar
  51. 51.
    Hsu J-MJ et al (2009) Encapsulation of an integrated neural interface device with Parylene C. IEEE Trans Biomed Eng 56(1):23–29PubMedCrossRefGoogle Scholar
  52. 52.
    Hukins DWL, Mahomed A, Kukureka SN (2008) Accelerated aging for testing polymeric biomaterials and medical devices. Med Eng Phys 30(10):1270–1274PubMedCrossRefGoogle Scholar
  53. 53.
    Jackson A, Mavoori J, Fetz EE (2007) Correlations between the same motor cortex cells and arm muscles during a trained task, free behavior, and natural sleep in the macaque monkey. J Neurophysiol 97(1):360–374PubMedCrossRefGoogle Scholar
  54. 54.
    Janting J, Branebjerg J, Rombach P (2001) Conformal coatings for 3D multichip microsystem encapsulation. Sensors Actuators A Phys 92(1–3):229–234CrossRefGoogle Scholar
  55. 55.
    Jiang G, Zhou DD (2010) Technology advances and challenges in hermetic packaging for implantable medical devices. In: Zhou D, Greenbaum E (eds) Implantable neural prostheses 2: techniques and engineering approaches. Springer, New York, pp 27–61Google Scholar
  56. 56.
    Jun JJ et al (2017) Fully integrated silicon probes for high-density recording of neural activity. Nature 551(7679):232–236PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Keuning W et al (2012) Cathode encapsulation of organic light emitting diodes by atomic layer deposited Al2O3 films and Al2O3/a-SiNx:H stacks. J Vac Sci Technol A Vac Surf Films 30(1):01A131CrossRefGoogle Scholar
  58. 58.
    Kim S et al (2009) Integrated wireless neural interface based on the Utah electrode array. Biomed Microdevices 11(2):453–466PubMedCrossRefGoogle Scholar
  59. 59.
    Klein JD, Clauson SL, Cogan SF (1989) Morphology and charge capacity of sputtered iridium oxide films. J Vac Sci Technol A 7(5):3043–3047CrossRefGoogle Scholar
  60. 60.
    Kozai TDY et al (2014) Chronic tissue response to carboxymethyl cellulose based dissolvable insertion needle for ultra-small neural probes. Biomaterials 35(34):9255–9268PubMedCrossRefGoogle Scholar
  61. 61.
    Kuppusami S, Oskouei RH (2015) Parylene coatings in medical devices and implants: a review. Univ J Biomed Eng 3(2):9–14Google Scholar
  62. 62.
    Leach J, Achyuta AKH, Murthy SK (2010) Bridging the divide between neuroprosthetic design, tissue engineering and neurobiology. Front Neuroeng 2:18PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Leber M (2018) Unpublished (in progress). unpublishedGoogle Scholar
  64. 64.
    Leber M et al (2016) Different methods to alter surface morphology of high aspect ratio structures. Appl Surf Sci 365:180PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Leber M et al (2017) Novel method of fabricating self-dissolvable and freely floating neural array. In 2017 19th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS). IEEE, pp 1726–1729Google Scholar
  66. 66.
    Ledermann N et al (2000) Sputtered silicon carbide thin films as protective coating for MEMS applications. Surf Coat Technol 125(1–3):246–250CrossRefGoogle Scholar
  67. 67.
    Lee H et al (2005) Biomechanical analysis of silicon microelectrode-induced strain in the brain. J Neural Eng 2(4):81–89PubMedCrossRefGoogle Scholar
  68. 68.
    Lee SB et al (2013) A wideband dual-antenna receiver for wireless recording from animals behaving in large arenas. IEEE Trans Biomed Eng 60(7):1993–2004PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Limb SJ et al (1998) Growth of fluorocarbon polymer thin films with high CF2 fractions and low dangling bond concentrations by thermal chemical vapor deposition. Appl Phys Lett 68(20):2810CrossRefGoogle Scholar
  70. 70.
    Loeb GE et al (1977) Parylene as a chronically stable, reproducible microelectrode insulator. IEEE Trans Biomed Eng BME-24(2):121–128CrossRefGoogle Scholar
  71. 71.
    Marrese CA (1987) Preparation of strongly adherent platinum black coatings. Anal Chem 59(1):217–218CrossRefGoogle Scholar
  72. 72.
    Meyer RD et al (2001) Electrodeposited iridium oxide for neural stimulation and recording electrodes. IEEE Trans Neural Syst Rehabil Eng 9(1):2–11PubMedCrossRefGoogle Scholar
  73. 73.
    Minnikanti S et al (2014) Lifetime assessment of atomic-layer-deposited Al2O3–Parylene C bilayer coating for neural interfaces using accelerated age testing and electrochemical characterization. Acta Biomater 10(2):960–967PubMedCrossRefGoogle Scholar
  74. 74.
    Miranda H et al (2010) HermesD: a high-rate long-range wireless transmission system for simultaneous multichannel neural recording applications. IEEE Trans Biomed Circuits Syst 4(3):181–191PubMedCrossRefGoogle Scholar
  75. 75.
    Muller R et al (2014) A miniaturized 64-channel 225μW wireless electrocorticographic neural sensor. In: 2014 IEEE international solid-state circuits conference digest of technical papers (ISSCC). IEEE, pp 412–413Google Scholar
  76. 76.
    Multi Channel Systems (2018) Wireless-systems. Available at: https://www.multichannelsystems.com/products/wireless-systems. Accessed 27 June 2018
  77. 77.
    Musallam S et al (2007) A floating metal microelectrode array for chronic implantation. J Neurosci Methods 160(1):122–127PubMedCrossRefGoogle Scholar
  78. 78.
    Najafi K, Wise KD, Mochizuki T (1985) A high-yield IC-compatible multichannel recording array. IEEE Trans Electron Devices 32(7):1206–1211CrossRefGoogle Scholar
  79. 79.
    Nature (2011) Method of the year 2010. Nat Methods 8(1):1–1CrossRefGoogle Scholar
  80. 80.
    Negi S et al (2009) Effect of sputtering pressure on pulsed-DC sputtered iridium oxide films. Sensors Actuators B Chem 137(1):370–378CrossRefGoogle Scholar
  81. 81.
    Negi S, Bhandari R, Rieth L, Solzbacher F (2010a) In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays. Biomed Mater (Bristol, England) 5(1):15007CrossRefGoogle Scholar
  82. 82.
    Negi S, Bhandari R, Rieth L, Van Wagenen R et al (2010b) Neural electrode degradation from continuous electrical stimulation: comparison of sputtered and activated iridium oxide. J Neurosci Methods 186(1):8–17PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Negi S, Bhandari R, Solzbacher F (2012) Morphology and electrochemical properties of activated and sputtered iridium oxide films for functional electrostimulation. J Sensor Technol 2(3):138–147CrossRefGoogle Scholar
  84. 84.
    NeuraLynx (2018) Cube2. Available at: https://neuralynx.com/hardware/cube2. Accessed 27 June 2018
  85. 85.
    Park S et al (2010) Nanoporous Pt microelectrode for neural stimulation and recording: in vitro characterization. J Phys Chem C 114(19):8721–8726CrossRefGoogle Scholar
  86. 86.
    Pashaie R et al (2014) Optogenetic brain interfaces. IEEE Rev Biomed Eng 7:3–30PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Prochazka A, Mushahwar VK, McCreery DB (2001) Neural prostheses. J Physiol 533(1):99–109PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Richardson RR, Miller JA, Reichert WM (1993) Polyimides as biomaterials: preliminary biocompatibility testing. Biomaterials 14(8):627–635PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Rizk M et al (2009) A fully implantable 96-channel neural data acquisition system. J Neural Eng 6(2):26002CrossRefGoogle Scholar
  90. 90.
    Robblee LS et al (1983a) Electrical stimulation with Pt electrodes. VII. Dissolution of Pt electrodes during electrical stimulation of the cat cerebral cortex. J Neurosci Methods 9(4):301–308PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Robblee LS, Lefko JL, Brummer SB (1983b) Activated Ir: an electrode suitable for reversible charge injection in saline solution. J Electrochem Soc 130(3):731CrossRefGoogle Scholar
  92. 92.
    Robblee LS et al (1985) Charge injection properties of thermally-prepared iridium oxide films. MRS Proc 55:303CrossRefGoogle Scholar
  93. 93.
    Roy RK, Lee K-R (2007) Biomedical applications of diamond-like carbon coatings: a review. J Biomed Mater Res B Appl Biomater 83B(1):72–84CrossRefGoogle Scholar
  94. 94.
    Sato H et al (2009) Remote radio control of insect flight. Front Integr Neurosci 3:24PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Scharf R et al (2016) Depth-specific optogenetic control in vivo with a scalable, high-density μLED neural probe. Sci Rep 6(1):28381PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Scharf R, Reiche CF, McAlinden N, Cheng Y, Xie E, Sharma R, Tathireddy P, Rieth L, Mathieson K, Blair S (2018) A compact integrated device for spatially selective optogenetic neural stimulation based on the Utah Optrode Array. In Optogenetics and Optical Manipulation 2018 (Vol. 10482, p. 104820M). International Society for Optics and PhotonicsGoogle Scholar
  97. 97.
    Schmitt G et al (1999) Passivation and corrosion of microelectrode arrays. Electrochim Acta 44(21–22):3865–3883CrossRefGoogle Scholar
  98. 98.
    Schwartz AB et al (2006) Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52(1):205–220PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Schwarz DA et al (2014) Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys. Nat Methods 11(6):670–676PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Seidl K et al (2011) CMOS-based high-density silicon microprobe arrays for electronic depth control in Intracortical neural recording. J Microelectromech Syst 20(6):1439–1448CrossRefGoogle Scholar
  101. 101.
    Selbmann F et al (2016) Deposition of Parylene C and characterization of its hermeticity for the encapsulation of MEMS and medical devices. In: 2016 IEEE 11th annual international conference on nano/micro engineered and molecular systems (NEMS). IEEE, pp 427–432Google Scholar
  102. 102.
    Seymour JP et al (2009) The insulation performance of reactive parylene films in implantable electronic devices. Biomaterials 30(31):6158–6167PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Shandhi MMH et al (2015) A novel method of fabricating high channel density neural array for large neuronal mapping. In: 2015 Transducers – 2015 18th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS). IEEE, pp 1759–1762Google Scholar
  104. 104.
    Shandhi MMH et al (2017) Reusable high aspect ratio 3-D nickel shadow mask. J Microelectromech Syst 26(2):376–384PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Sharma A et al (2010) Long term in vitro stability of fully integrated wireless neural interfaces based on Utah slant electrode array. Appl Phys Lett 96(7):73702PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Sharma R et al (2011) Application-specific customizable architectures of Utah neural interfaces. Procedia Eng 25:1016–1019CrossRefGoogle Scholar
  107. 107.
    Sharma A et al (2012) Evaluation of the packaging and encapsulation reliability in fully integrated, fully wireless 100 channel Utah slant electrode Array (USEA): implications for long term functionality. Sensors Actuators A Phys 188:167–172CrossRefGoogle Scholar
  108. 108.
    Stadler S, Ajmera PK (2008) Sensors and materials: an international journal on sensor technology. Scientific Publ. Division of MYU, TokyoGoogle Scholar
  109. 109.
    Subbaroyan J, Martin DC, Kipke DR (2005) A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex. J Neural Eng 2(4):103–113PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Szuts TA et al (2011) A wireless multi-channel neural amplifier for freely moving animals. Nat Neurosci 14(2):263–269PubMedCrossRefGoogle Scholar
  111. 111.
    Takmakov P et al (2015) Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species. J Neural Eng 12(2):26003CrossRefGoogle Scholar
  112. 112.
    Tan X et al (2018) Auditory neural activity in congenitally deaf mice induced by infrared neural stimulation. Sci Rep 8(1):388PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Triangle Biosystems International (2018) W-Series. Available at: http://www.trianglebiosystems.com/w-series-systems.html. Accessed 27 June 2018
  114. 114.
    Troyk PR, Cogan SF (2005) Sensory neural prostheses. In: Neural engineering. Springer, Boston, pp 1–48Google Scholar
  115. 115.
    Tykocinski M et al (2001) Chronic electrical stimulation of the auditory nerve using high surface area (HiQ) platinum electrodes. Hear Res 159:53–68PubMedCrossRefGoogle Scholar
  116. 116.
    Vanhoestenberghe A, Donaldson N (2013) Corrosion of silicon integrated circuits and lifetime predictions in implantable electronic devices. J Neural Eng 10(3):31002CrossRefGoogle Scholar
  117. 117.
    Wang J et al (2012) Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications. J Neural Eng 9(1):16001CrossRefGoogle Scholar
  118. 118.
    Wark HAC et al (2013) A new high-density (25 electrodes/mm2) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures. J Neural Eng 10(4):45003CrossRefGoogle Scholar
  119. 119.
    Wellman SM et al (2017) A materials roadmap to functional neural Interface design. Adv Funct Mater 28(12):1701269PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Wells J et al (2005) Optical stimulation of neural tissue in vivo. Opt Lett 30(5):504PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Weremfo A et al (2015) Investigating the interfacial properties of electrochemically roughened platinum electrodes for neural stimulation. Langmuir 31(8):2593–2599PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Wessling B, Mokwa W, Schnakenberg U (2006) RF-sputtering of iridium oxide to be used as stimulation material in functional medical implants. J Micromech Microeng 16(6):S142–S148CrossRefGoogle Scholar
  123. 123.
    Whalen JJ et al (2006) Electrochemical characterization of charge injection at electrodeposited platinum electrodes in phosphate buffered saline. J Electrochem Soc 153(12):C834CrossRefGoogle Scholar
  124. 124.
    Wise KD (2005) Silicon microsystems for neuroscience and neural prostheses. IEEE Eng Med Biol Mag 24(5):22–29PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Wise KD, Angell JB, Starr A (1970) An integrated-circuit approach to extracellular microelectrodes. IEEE Trans Biomed Eng BME-17(3):238–247CrossRefGoogle Scholar
  126. 126.
    Wu F et al (2015) Monolithically integrated μLEDs on silicon neural probes for high-resolution Optogenetic studies in behaving animals. Neuron 88(6):1136–1148PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Xiang Z et al (2014) Ultra-thin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle. J Micromech Microeng 24(6):65015CrossRefGoogle Scholar
  128. 128.
    Xiao X et al (2006) In vitro andin vivo evaluation of ultrananocrystalline diamond for coating of implantable retinal microchips. J Biomed Mater Res B Appl Biomater 77B(2):273–281CrossRefGoogle Scholar
  129. 129.
    Xie X (2013) Atomic layer deposited aluminum oxide and parylene C bi-layer encapsulation for biomedical implantable devices (Order No. 3607382). Available from ProQuest Dissertations & Theses Global. (1492997360)Google Scholar
  130. 130.
    Xie X et al (2012) Plasma-assisted atomic layer deposition of Al2O3 and parylene C bi-layer encapsulation for chronic implantable electronics. Appl Phys Lett 101(9):93702PubMedCrossRefGoogle Scholar
  131. 131.
    Xie X et al (2013) Long-term bilayer encapsulation performance of atomic layer deposited Al2O3 and parylene c for biomedical implantable devices. IEEE Trans Biomed Eng 60(10):2943–2951PubMedCrossRefGoogle Scholar
  132. 132.
    Xie X, Rieth L, Williams L et al (2014a) Long-term reliability of Al2O3 and Parylene C bilayer encapsulated Utah electrode array based neural interfaces for chronic implantation. J Neural Eng 11(2):26016CrossRefGoogle Scholar
  133. 133.
    Xie X, Rieth L, Negi S et al (2014b) Self aligned tip Deinsulation of atomic layer deposited Al2O3 and Parylene C coated Utah electrode Array based neural interfaces. J Micromech Microeng Struct Devices Syst 24(3):35003CrossRefGoogle Scholar
  134. 134.
    Xie W, Kothari V, Terry BS (2015) A bio-inspired attachment mechanism for long-term adhesion to the small intestine. Biomed Microdevices 17(4):68PubMedCrossRefGoogle Scholar
  135. 135.
    Yao Q et al (1999) Adhesion enhancement of underfill materials by silane additives. In: Proceedings – international symposium on advanced packaging materials: processes, properties and interfaces. IMAPS – International microelectronics assembly and packaging society, pp 27–30Google Scholar
  136. 136.
    Yin M et al (2013) A 100-channel hermetically sealed implantable device for chronic wireless neurosensing applications. IEEE Trans Biomed Circuits Syst 7(2):115–128PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Yin M et al (2014) Wireless neurosensor for full-spectrum electrophysiology recordings during free behavior. Neuron 84(6):1170–1182PubMedCrossRefGoogle Scholar
  138. 138.
    Yoo J-M et al (2012) Hybrid laser and reactive ion etching of Parylene-C for deinsulation of a Utah electrode array. J Micromech Microeng 22(10):105036CrossRefGoogle Scholar
  139. 139.
    Yoo J-M et al (2013) Excimer laser deinsulation of Parylene-C on iridium for use in an activated iridium oxide film-coated Utah electrode array. J Neurosci Methods 215(1):78–87PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Yu Q, Deffeyes J, Yasuda H (2001) Engineering the surface and interface of Parylene C coatings by low-temperature plasmas. Prog Org Coat 41(4):247–253CrossRefGoogle Scholar
  141. 141.
    Zhang J et al (2009) Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue. J Neural Eng 6(5):055007PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Zhou D (2007) Platinum electrode surface coating and method for manufacturing the sameGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Moritz Leber
    • 1
    • 2
    Email author
  • Julia Körner
    • 1
  • Christopher F. Reiche
    • 1
  • Ming Yin
    • 1
    • 2
  • Rajmohan Bhandari
    • 1
    • 2
  • Robert Franklin
    • 2
  • Sandeep Negi
    • 1
    • 2
  • Florian Solzbacher
    • 1
    • 2
    Email author
  1. 1.University of UtahSalt Lake CityUSA
  2. 2.Blackrock MicrosystemsSalt Lake CityUSA

Personalised recommendations