Climate Resilient Agriculture

  • Dinesh Chandra Uprety
  • V. R. Reddy
  • Jyostna Devi Mura


Physical scientists proposed the mitigation options to combat global warming by (1) burying the CO2 in deep ocean, (2) by supplying iron to the parts of the ocean to increase the photosynthesis in ocean vegetation, (3) by the addition of light scattering particles to the atmosphere to scatter sunlight back to space, (4) by adding propane to counter the loss of stratospheric ozone, (5) by developing renewable energy generation technology from solar farms, and (6) by turning the greenhouse gases into stones, and this Scandinavian technology showed that by dissolving GHGs in water and pumping them underground, over 95% of injected CO2 converts into minerals and binds permanently within 2 years. These physical mitigation options may not be very economical due to their costs and side effects (IPCC 2005).


  1. Aggarwal, P. (2008). Global climate change and Indian agriculture: Impacts, adaptation and mitigation. INDIAN J AGR SCI, 78, 911.Google Scholar
  2. Ames, J. S. (1902). Marie-Alfred Cornu. The Astrophysical Journal, 15, 299.CrossRefGoogle Scholar
  3. Applegate, D. (2005). Near east: Origins of domestication and food production [online]. Available [Accessed 20 May 2018].Google Scholar
  4. Asimov, I., & Wool, D. (1985). How did we find out about the atmosphere? New York: Walker.Google Scholar
  5. Bansal, K. C., Lenka, S. K., & Mondal, T. K. (2014). Genomic resources for breeding crops with enhanced abiotic stress tolerance. Plant Breeding, 133, 1–11.CrossRefGoogle Scholar
  6. Bates, D. R., & Nicolet, M. (1950). The photochemistry of atmospheric water vapor. Journal of Geophysical Research, 55, 301–327.CrossRefGoogle Scholar
  7. Becker, M., Gruenheit, N., Steel, M., Voelckel, C., Deusch, O., Heenan, P. B., Mclenachan, P. A., Kardailsky, O., Leigh, J. W., & Lockhart, P. J. (2013). Hybridization may facilitate in situ survival of endemic species through periods of climate change. Nature Climate Change, 3, 1039.CrossRefGoogle Scholar
  8. Betts, A., Jia, P. W., & Dodson, J. (2014). The origins of wheat in China and potential pathways for its introduction: A review. Quaternary International, 348, 158–168.CrossRefGoogle Scholar
  9. Chapman, S. (1942). The photochemistry of atmospheric oxygen. Reports on Progress in Physics, 9, 92.CrossRefGoogle Scholar
  10. Dobson, G. M. B., & Harrison, D. (1926). Measurements of the amount of ozone in the Earth’s atmosphere and its relation to other geophysical conditions. Proceedings of the Royal Society of London A, 110, 660–693.CrossRefGoogle Scholar
  11. Doughty, C. E. (2010). The development of agriculture in the Americas: An ecological perspective. Ecosphere, 1, 1–11.CrossRefGoogle Scholar
  12. Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., & Eickemeier, P. (2014). IPCC, 2014: Summary for policymakers. Climate change.Google Scholar
  13. Falkowski, P., Scholes, R., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Högberg, P., & Linder, S. (2000). The global carbon cycle: A test of our knowledge of earth as a system. Science, 290, 291–296.CrossRefGoogle Scholar
  14. FAO. (2016a). Climate change and food security: Risks and responses. Available:
  15. Gerhart, L. M., & Ward, J. K. (2010). Plant responses to low [CO2] of the past. New Phytologist, 188, 674–695.CrossRefGoogle Scholar
  16. Henry, R. J. (2014). Sequencing of wild crop relatives to support the conservation and utilization of plant genetic resources. Plant Genetic Resources, 12, S9–S11.CrossRefGoogle Scholar
  17. IPCC. (2005). IPCC special report on Carbon dioxide capture and storage prepared by working group III of the IPCC. metz, 80., O R Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer. Cambridge: Cambridge University Press.Google Scholar
  18. IPCC. (2007). IPCC fourth assessment report: Climate change 2007 [Online]. Available: [Accessed 16 Apr 2018].
  19. Maheswari, M., Sarkar, B., Vanaja, M., Rao, M. S., Rao, C. S., Venkateswarlu, B., & Sikka, A. (2015). Climate resilient crop varieties for sustainable food production under aberrant weather conditions. ICAR, New Delhi, NICRA/2015. Bulletin no. 4.Google Scholar
  20. Rubin, M. B. (2001). The history of ozone. The Schönbein period, 1839–1868. Bulletin for the History of Chemistry, 26, 40–56.Google Scholar
  21. Shapter, F. M., Fitzgerald, T. L., Waters, D. L., Mcdonald, S., Chivers, I. H., Nevo, E., & Henry, R. (2012). Analysis of adaptive ribosomal gene diversity in wild plant populations from contrasting climatic environments. Plant Signaling & Behavior, 7, 602–604.CrossRefGoogle Scholar
  22. Ward, J. K., Antonovics, J., Thomas, R. B., & Strain, B. R. (2000). Is atmospheric CO 2 a selective agent on model C 3 annuals? Oecologia, 123, 330–341.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Dinesh Chandra Uprety
    • 1
  • V. R. Reddy
    • 2
  • Jyostna Devi Mura
    • 2
  1. 1.Division of Plant PhysiologyIndian Agricultural Research InstituteNew DelhiIndia
  2. 2.Adaptive Cropping System LaboratoryUSDA, ARSBeltsvilleUSA

Personalised recommendations