Private Communication Based on Hierarchical Identity-Based Cryptography

  • D. KalyaniEmail author
  • R. Sridevi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 755)


Public Key Infrastructure (PKI) is an important tool for securing information in the communication. Presently, a PKI framework demonstrates a pattern toward an emerging worldwide PKI which turns out to be more complicated. In this paper, we address the issue of a contact acquiring a message that it missed, from different contacts of the client while keeping up the secrecy of all gatherings required in the networks. Along these lines in this paper, we built up a specific peer-to-peer public key framework model realizing efficient hierarchical identity-based encryption a modification to the proposed by Boneh HIBE. The proposed scheme need not set up a maximum potential recipients set ahead of time, and it has steady size of the general public key, private key, and header of cipher content. We have utilized our proposed key issuing method to distribute private keys of the users to avoid escrow issue problem. We have presented performance analysis with comparison results assuming a PKI network environment.


Cryptography IBE HIBE Pairings Key issuing protocol PKI 


  1. 1.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Advances in Cryptology Crypto’84, LNCS, vol. 196, pp. 47–53. Springer (1984)Google Scholar
  2. 2.
    Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) Advances in Cryptology—CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pp. 213–229. Springer (2001)Google Scholar
  3. 3.
    Boneh, D., Boyen, X.: Efficient selective id secure identity-based encryption without random oracles. In: EUROCRYPT 2004, vol. 3027, pp. 223–238. Springer (2004)Google Scholar
  4. 4.
    Boneh, D., Boyen, X., Goh, E.: Hierarchical identity based encryption with constant size ciphertext. In: EUROCRYPT 2005, vol. 3494, pp. 440–456. Springer (2005)Google Scholar
  5. 5.
    Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. In: Zheng, Y. (ed.) Advances in Cryptology—ASIACRYPT 2002, vol. 2501, pp. 548–566. Springer (2002)Google Scholar
  6. 6.
    Gentry, C.: Practical identity based encryption without random oracles. In: Vaudenay, S. (ed.) Advances in Cryptology—EUROCRYPT 2006, vol. 4004, pp. 445–464. Springer (2006)Google Scholar
  7. 7.
    Gentry, C., Halevi, S.: Hierarchical identity based encryption with polynomially many levels. In: Reingold, O. (ed.) Theory of Cryptography—TCC 2009, vol. 5444, pp. 437–456. Springer (2009)Google Scholar
  8. 8.
    Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen, L.R. (ed.) Advances in Cryptology—EUROCRYPT 2002, vol. 2332, pp. 466–481. Springer (2002)Google Scholar
  9. 9.
    Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revocation. In: Ning, P., Syverson, P.F., Jha, S. (eds.) ACM Conference on Computer and Communications Security, pp. 417–426. ACM (2008)Google Scholar
  10. 10.
    Waters, B.: Efficient identity-based encryption without random oracles. In: EUROCRYPT 2005, vol. 3494, pp. 114–127. Springer (2005)Google Scholar
  11. 11.
    Boyen, X., Waters, B.: Anonymous hierarchical identity based encryption (without random oracles). In: CRYPTO 2006, vol. 4117, pp. 290–307. Springer (2006)Google Scholar
  12. 12.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) Advances in Cryptology—EUROCRYPT 2005, vol. 3494, pp. 457–473. Springer (2005)Google Scholar
  13. 13.
    Seo, J.H., Emura, K.: Efficient delegation of key generation and revocation functionalities in identity-based encryption. In: Dawson, Ed. (ed.) Topics in Cryptology—CT-RSA 2013, vol. 7779, pp. 343–358 (2013)Google Scholar
  14. 14.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Proceedings of the 11th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO91, pp. 129–140. Springer, London, UK (1992)Google Scholar
  15. 15.
    Lee, B., Boyd, E., Daeson, E., Kim, K., Yang, J., Yoo, S.: Secure key issuing in ID-based cryptography. In: Proceedings of the Second Australian Information Security Workshop-AISW 2004, pp. 69–74Google Scholar
  16. 16.
    Gangishetti, R., Gorantla, M.C., Das, M.L., Saxena, A., Gulati, V.P.: An efficient secure key issuing protocol in ID-based cryptosystems. In: Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05), vol. 1, pp. 674–678. IEEE Computer Society (2005)Google Scholar
  17. 17.
    Kalyani, D., Sridevi, R.: Robust distributed key issuing protocol for identity based cryptography. In: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Jaipur, 2016, pp. 821–825.
  18. 18.
    Baden, R., Bender, A., Spring, N., Bhattacharjee, B., Starin, D.: Persona: an online social network with user-defined privacy. SIGCOMM Comput. Commun. Rev. 39(4), 135146 (2009). Scholar
  19. 19.
    Gunther, F., Manulis, M., Strufe, T.: Cryptographic treatment of private user profiles. In: Danezis, G., Dietrich, S., Sako, K. (eds.) Proceedings of the RLCPS FC 2011 Workshops, LNCS, vol. 7126, pp. 40–54. Springer (2011)Google Scholar
  20. 20.
    Guha, S., Tang, K., Francis, P.: NOYB: privacy in online social networks. Proceedings of the WOSN, p. 4954. ACM, New York, NY, USA (2008)Google Scholar
  21. 21.
    Luo, W., Xie, Q., Hengartner, U.: Facecloak: an architecture for user privacy on social networking sites. In: Proceedings of the IEEE CSE, pp. 26–33. IEEE, Washington, DC, USA (2009)Google Scholar
  22. 22.
    Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) Proceedings of the Advances in Cryptology—EUROCRYPT 2006, vol. 4004, pp. 445–464 (2006)Google Scholar
  23. 23.
    Tentu, A.N., Mahapatra, B., Venkaiah, V.Ch., Kamakshi Prasad, V.: New secret sharing scheme for multipartite access structures with threshold changeability. In: ICACCI 2015, Kochi, India, 10–13 August 2015Google Scholar
  24. 24.
    Tentu, A.N., Rao, A.A.: Efficient Verifiable Multi-secret Sharing Based on Y.C.H. CSS 2014, vol. 448, pp. 100–109Google Scholar
  25. 25.
    Tentu, A.N., Paul, P., Venkaiah, V.Ch.: Conjunctive hierarchical secret sharing scheme based on MDS codes. In: IWOCA 2013, vol. 8288, pp. 463–467Google Scholar
  26. 26.
    Jahid, S., Mittal, P., Borisov, N.: EASiER: encryption-based access control in social networks with efficient revocation, pp. 411–415. ACM (2011)Google Scholar
  27. 27.
    Kalyani, D., Sridevi, R.: Survey on identity based and hierarchical identity based encryption schemes. Int. J. Comput. Appl. 134(14), 32–37 (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of ITVNRVJIETBachupally, HyderabadIndia
  2. 2.Department of CSEJNTU HyderabadKukatpally, HyderabadIndia

Personalised recommendations