Impact of Thermophoretic MHD Visco-Elastic Fluid Flow Past a Wedge with Heat Source and Chemical Reaction

  • Bibhash Deka
  • Rita ChoudhuryEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 755)


An analysis is carried out to investigate the boundary layer flow of an electrically conducting visco-elastic fluid past a wedge in presence of thermophoresis, heat source, chemical reaction and magnetic field with heat and mass transfer. The problem has been solved by the application of steepest descent method used by Meksyn. Analytical expressions for the velocity, temperature, concentration, shearing stress, Nusselt number and Sherwood number have been obtained and illustrated graphically to observe the effects of visco-elastic parameter with the combination of various values of pertinent flow parameters involved in the solution. The relevancy of this model has been observed in various chemical and industrial processes.


Visco-elastic Boundary layer MHD Wedge Thermophoresis Chemical reaction 


  1. 1.
    Watanabe, T.: Thermal boundary layer over a wedge with uniform suction or injection in forced flow. Acta Mech. 83, 119–126 (1990)CrossRefGoogle Scholar
  2. 2.
    Ishak, A., Nazar, R., Pop, I.: Falkner–Skan equation for flow past a moving wedge with suction or injection. J. Appl. Math. Comput. 25, 67–83 (2007)Google Scholar
  3. 3.
    Yih, K.A.: Uniform suction/blowing effect on forced convection about a wedge: uniform heat flux. Acta Mech. 128, 173–181 (1998)Google Scholar
  4. 4.
    Mahmood, M., Asghar, S., Hossain, M.A.: Hydromagnetic flow of viscous incompressible fluid past a wedge with permeable surface. J. Appl. Math. Mech. 89, 174–188 (2009)Google Scholar
  5. 5.
    Shrivastava, U.N., Usha, S.: Magneto-fluid dynamic boundary layer on a moving continuous flat surface. Indian J. Pure Appl. Math. 18, 741–751(1987)Google Scholar
  6. 6.
    Murthy, S.N., Sapre, M.: Effect of magnetic field on laminar boundary layer flow on a flat plate. Indian J. Pure Appl. Math. 22, 601–609 (1991)Google Scholar
  7. 7.
    Meksyn, D.: New Method in Laminar Boundary Layer Theory. Pergamon Press (1961)Google Scholar
  8. 8.
    Sattar, M.A.: A local similarity transformation for the unsteady two-dimensional hydrodynamic boundary layer equations of a flow past a wedge. Int. J. Appl. Math. Mech. 7, 15–28 (2011)Google Scholar
  9. 9.
    Cheng, W.T., Lin, H.T.: Non-similarity solution and correlation of transient heat transfer in laminar boundary layer flow over a wedge. Int. J. Eng. Sci. 40, 531–538 (2002)CrossRefGoogle Scholar
  10. 10.
    Goren, S.L.: Thermophoresis of aerosol particles in laminar boundary layer on flat plate. J. Colloid Interface Sci. 61, 77–85 (1977)CrossRefGoogle Scholar
  11. 11.
    Chamkha, J.A., Pop, I.: Effect of thermophoresis particle deposition in free-convection boundary layer from a vertical flat plate embedded in a porous medium. Int. Commum Heat Mass Transf. 31, 421–430 (2004)CrossRefGoogle Scholar
  12. 12.
    Selim, A., Hossain, M.A., Das, R.: The effect of surface mass transfer on mixed convection flow past a heated vertical flat permeable plate with thermophoresis. Int. J. Therm. Sci. 42, 973–982 (2003)CrossRefGoogle Scholar
  13. 13.
    Postelnicu, A.: Effects of thermophoresis particle deposition in free convection boundary layer from a horizontal flat plate embedded in a porous medium. Int. J. Heat Mass Transf. 50, 2981–2985 (2007)CrossRefGoogle Scholar
  14. 14.
    Bakier, A.Y., Gorla, R.S.R.: Effects of thermophoresis and radiation on laminar flow along a semi-infinite vertical plate. Heat Mass Trans. 47, 419–425 (2011)Google Scholar
  15. 15.
    Zueco, J., Beg, O.A., Takhar, H.S., Prasad, V.R.: Thermophoretic hydromagnetic dissipative heat and mass transfer with lateral mass flux, heat source, Ohmic heating and thermal conductivity effects: network simulation numerical study. Appl. Therm. Eng. 29, 2808–2815 (2009)CrossRefGoogle Scholar
  16. 16.
    Noor, N.F.M., Abbasbandy, S., Hashim, I.: Heat and mass transfer of thermophoretic MHD flow over an inclined radiate isothermal permeable surface in the presence of heat source/sink. Int. J. Heat Mass Trans. 55, 2122–2128 (2012)CrossRefGoogle Scholar
  17. 17.
    Kundu, P.K., Das, K., jana, S.: Combined effects of thermophoresis and chemical reaction on magnetohydrodynamics mixed convection flow. J. Thermophys. Heat Trans. 27, 741–747 (2013)Google Scholar
  18. 18.
    Das, K.: Influence of thermophoresis and chemical reaction on MHD micropolar fluid flow with variable fluid properties. Int. J. Heat Mass Trans. 55, 7166–7174 (2012)CrossRefGoogle Scholar
  19. 19.
    Coleman, B.D., Noll, W.: An application theorem for functional with applications in continuum mechanics. Arch. Ration Mech. Anal. 6, 350–360 (1960)CrossRefGoogle Scholar
  20. 20.
    Coleman, B.D., Markovitz, H.: Incompressible second-order fluids. Adv. Appl. Mech. 8, 69–101 (1964)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Schlichting, H.: Boundary Layer Theory. McGraw Hill, New York (1968)zbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of MathematicsGauhati UniversityGuwahatiIndia

Personalised recommendations