Methods of Enzyme Immobilization and Its Applications in Food Industry

  • Archana Singh
  • Manendra Singh Negi
  • Ashutosh Dubey
  • Vinod Kumar
  • A. K. Verma


Enzymes are extensively used in diverse food processing, for example in beer, wine, and cheese production. However, the widespread industrial application of enzymes, which has been going on for a long time, is often hindered by their short shelf-storage life, long-lasting effective stability, and inconvenient recovery and reutilization. These downsides can generally be overcome using various methods to immobilize the enzymes. Supported materials for immobilization are selected on the basis of enzyme application. Recently immobilized enzymes have been found to be more capable and resistant to changes compared to free enzymes. Additionally, immobilized enzyme frameworks permit a simple recovery of both product and enzymes, various means of recycling enzymes, and nonstop enzymatic processes. As of late, much consideration has been given to the possibility of immobilized enzymes in the food industry. This chapter discusses enzyme immobilization strategies, requirement for immobilization, and diverse applications in the food industry.


Enzyme immobilization Enzyme stabilization Immobilization methods Enzymes for food 


Conflict of Interest

The authors declare no conflict of interest in the publication of this manuscript.


  1. Afaq S, Iqbal J (2001) Immobilization and stabilization of papain on chelating sepharose: a metal chelate regenerable carrier. Electron J Biotechnol 4(3):1–2Google Scholar
  2. Agrawal R, Verma AK, Satlewal A (2016) Application of nanoparticle-immobilized thermostable β-glucosidase for improving the sugarcane juice properties. Innov Food Sci Emerg Technol 33:472–482CrossRefGoogle Scholar
  3. Ahmad R, Sardar M (2015) Enzyme immobilization: an overview on nanoparticles as immobilization matrix. Biochem Anal Biochem 4(2):1–8Google Scholar
  4. Ahmad A, Bishayee S, Bachhawat BK (1973) A novel method for immobilization of chicken brain arylsulfatase A using concanavalin A. Biochem Biophys Res Commun 53(3):730–736PubMedCrossRefPubMedCentralGoogle Scholar
  5. Ahmad R, Khatoon N, Sardar M (2013) Biosynthesis, characterization and application of TiO2 nanoparticles in biocatalysis and protein folding. J Proteins Proteomics 4(2):115–121Google Scholar
  6. Ahmad R, Mishra A, Sardar M (2014) Simultaneous immobilization and refolding of heat treated enzymes on TiO2 nanoparticles. Adv Sci Eng Med 6(12):1264–1268CrossRefGoogle Scholar
  7. Ahumada K, Martínez-Gil A, Moreno-Simunovic Y et al (2016) Aroma release in wine using co-immobilized enzyme aggregates. Molecules 21(11):1485CrossRefGoogle Scholar
  8. Akyilmaz E, Dinçkaya E (1999) A new enzyme electrode based on ascorbate oxidase immobilized in gelatin for specific determination of L-ascorbic acid. Talanta 50(1):87–93PubMedCrossRefPubMedCentralGoogle Scholar
  9. Amárita F, Fernández CR, Alkorta F (1997) Hybrid biosensors to estimate lactose in milk. Anal Chim Acta 349(1–3):153–158CrossRefGoogle Scholar
  10. Andreescu S, Njagi J, Ispas C (2007) Nanostructured materials for enzyme immobilization and biosensors. In: Erokhin V, Ram MK, Yavuz O (eds) The new frontiers of organic and composite nanotechnology. Elsevier, New York, p 355Google Scholar
  11. Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30(3):512–523PubMedPubMedCentralCrossRefGoogle Scholar
  12. Ansari SA, Husain Q, Qayyum S et al (2011) Designing and surface modification of zinc oxide nanoparticles for biomedical applications. Food Chem Toxicol 49(9):2107–2115PubMedCrossRefGoogle Scholar
  13. Asgher M, Shahid S, Kamal et al (2014) Recent trends and valorization of immobilization strategies and ligninolytic enzymes by industrial biotechnology. J Mol Catal B Enzyme 101:56–66CrossRefGoogle Scholar
  14. Aubin-Tam ME, Hamad-Schifferli K (2008) Structure and function of nanoparticle–protein conjugates. Biomed Mater 3(3):034001PubMedCrossRefGoogle Scholar
  15. Bai Y, Huang H, Meng K et al (2012) Identification of an acidic α-amylase from Alicyclobacillus sp. A4 and assessment of its application in the starch industry. Food Chem 131(4):1473–1478CrossRefGoogle Scholar
  16. Barker SA, Somers PJ, Epton R (1968) Preparation and properties of α-amylase chemically coupled to microcrystalline cellulose. Carbohydr Res 8(4):491–497CrossRefGoogle Scholar
  17. Barnett LB, Bull HB (1959) The optimum pH of adsorbed ribonuclease. Biochim Biophys Acta 36(1):244–246PubMedCrossRefGoogle Scholar
  18. Boujtita M, El Murr N (2000) Ferrocene-mediated carbon paste electrode modified with D-fructose dehydrogenase for batch mode measurement of D-fructose. Appl Biochem Biotech 89(1):55–66CrossRefGoogle Scholar
  19. Boujtita M, Hart JP, Pittson R (2000) Development of a disposable ethanol biosensor based on a chemically modified screen-printed electrode coated with alcohol oxidase for the analysis of beer. Biosens Bioelectron 15(5):257–263PubMedCrossRefGoogle Scholar
  20. Brady D, Jordaan J (2009) Advances in enzyme immobilisation. Biotechnol Lett 31(11):1639–1650PubMedCrossRefGoogle Scholar
  21. Brena BM, Batista-Viera F (2006) Immobilization of enzymes: a literature survey. Immob Enzyme Cells 1:15–30CrossRefGoogle Scholar
  22. Brígida AI, Amaral PF, Coelho MA et al (2014) Lipase from Yarrowia lipolytica: production, characterization and application as an industrial biocatalyst. J Mol Catal B Enzyme 101:148–158CrossRefGoogle Scholar
  23. Cabrera MP, Assis CR, Neri DF et al (2017) High sucrolytic activity by invertase immobilized onto magnetic diatomaceous earth nanoparticles. Biotechnol Rep 14:38–46CrossRefGoogle Scholar
  24. Cantone S, Ferrario V, Corici L et al (2013) Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chem Soc Rev 42(15):6262–6276PubMedCrossRefGoogle Scholar
  25. Cerreti M, Markošová K, Esti M et al (2017) Immobilisation of pectinases into PVA gel for fruit juice application. Int J Food Sci Technol 52(2):531–539CrossRefGoogle Scholar
  26. Chauhan S, Vohra A, Lakhanpal A et al (2015) Immobilization of commercial pectinase (Polygalacturonase) on celite and its application in juice clarification. J Food Process Preserv 39(6):2135–2141CrossRefGoogle Scholar
  27. Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotech 14(4):438–443PubMedCrossRefGoogle Scholar
  28. Cipolatti EP, Silva MJA, Klein M et al (2014) Current status and trends in enzymatic nanoimmobilization. J Mol Catal B Enzyme 99:56–67CrossRefGoogle Scholar
  29. Cirpan A, Alkan S, Toppare L et al (2003) Immobilization of invertase in conducting copolymers of 3-methylthienyl methacrylate. Bioelectrochemistry 59(1):29–33PubMedCrossRefGoogle Scholar
  30. Contesini FJ, Alencar FJ, Kawaguti HY et al (2013) Potential applications of carbohydrases immobilization in the food industry. Int J Mol Sci 14(1):1335–1369PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cosnier S, Gondran C, Watelet JC et al (1998) A bienzyme electrode (alkaline phosphatase− polyphenol oxidase) for the amperometric determination of phosphate. Anal Chem 70(18):3952–3956CrossRefGoogle Scholar
  32. Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3(1):1–9PubMedCrossRefPubMedCentralGoogle Scholar
  33. Deshpande A, D'souza SF, Nadkarni GB (1987) Coimmobilization of D-amino acid oxidase and catalase by entrapment of Trigonopsis variabilis in radiation polymerised polyacrylamide beads. J Biosci 11(1):137–144CrossRefGoogle Scholar
  34. Dickey FH (1955) Specific adsorption. J Phys Chem 59(8):695–707CrossRefGoogle Scholar
  35. Di-Marco M, Shamsuddin S, Razak KA et al (2010) Overview of the main methods used to combine proteins with nanosystems: absorption, bioconjugation, and encapsulation. Int J Nanomed 5:37Google Scholar
  36. Draisci R, Volpe G, Lucentini L et al (1998) Determination of biogenic amines with an electrochemical biosensor and its application to salted anchovies. Food Chem 62(2):225–232CrossRefGoogle Scholar
  37. El-Sayed ST, Hanafy SS, El-Sayed ME et al (2017) Enzymatic production of high fructose syrup from sugar beet and chicory roots using immobilized pea invertase. Res J Pharmaceut Biol Chem Sci 8(2):184Google Scholar
  38. Feng X, Patterson DA, Balaban M et al (2013) Enabling the utilization of wool as an enzyme support: enhancing the activity and stability of lipase immobilized onto woolen cloth. Colloid Surfaces B 102:526–533CrossRefGoogle Scholar
  39. Gajovic N, Warsinke A, Scheller FW (1997) Comparison of two enzyme sequences for a novel L-malate biosensor. J Chem Technol Biotechnol 68(1):31–36CrossRefGoogle Scholar
  40. Gale EF, Epps HM (1944) Studies on bacterial amino-acid decarboxylases: 1. l (+)-lysine decarboxylase. Biochem J 38(3):232PubMedPubMedCentralCrossRefGoogle Scholar
  41. Grosová Z, Rosenberg M, Rebroš M et al (2008) Entrapment of β-galactosidase in polyvinylalcohol hydrogel. Biotechnol Lett 30(4):763–767PubMedCrossRefPubMedCentralGoogle Scholar
  42. Grubhofer N, Schleith L (1953) Modified ion exchangers as specific adsorbents. Naturwissenschaften 40:508–512CrossRefGoogle Scholar
  43. Guisán JM, Penzol G, Armisen P et al (1997) Immobilization of enzymes acting on macromolecular substrates. In: Bickerstaff GF (ed) Immobilization of enzymes and cells. Humana Press, Totowa, pp 261–275Google Scholar
  44. Harkins WD, Fourt L, Fourt PC (1940) Immunochemistry of catalase II. Activity in multilayers. J Biol Chem 132(1):111–118Google Scholar
  45. Hartmann M, Kostrov X (2013) Immobilization of enzymes on porous silicas–benefits and challenges. Chem Soc Rev 42(15):6277–6289PubMedCrossRefPubMedCentralGoogle Scholar
  46. Haynes R, Walsh KA (1969) Enzyme envelopes on colloidal particles. Biochem Biophys Res Commun 36(2):235–242PubMedCrossRefPubMedCentralGoogle Scholar
  47. Hibi T, Senda M (2000) Enzymatic assay of histamine by amperometric detection of H2O2 with a peroxidase-based sensor. Biosci Biotechnol Biochem 64(9):1963–1966PubMedCrossRefPubMedCentralGoogle Scholar
  48. Hiteshi K, Chauhan S, Gupta R (2013) Immobilization of microbial pectinases: a review. CIBTech J Biotechnol 2:37–52Google Scholar
  49. Ho GH, Liao CC (1985) US Patent 4,506,015. U.S. Patent and Trademark Office, Washington, DC, 19 March 1985Google Scholar
  50. Homaei AA, Sariri R, Vianello F et al (2013) Enzyme immobilization: an update. J Chem Biol 6(4):185PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hu S, Xu C, Luo J et al (2000) Biosensor for detection of hypoxanthine based on xanthine oxidase immobilized on chemically modified carbon paste electrode. Anal Chim Acta 412(1):55–61CrossRefGoogle Scholar
  52. Hudson S, Cooney J, Magner E (2008) Proteins in mesoporous silicates. Angew Chem Int Ed 47(45):8582–8594CrossRefGoogle Scholar
  53. Hwang ET, Gu MB (2013) Enzyme stabilization by nano/microsized hybrid materials. Eng Life Sci 13(1):49–61CrossRefGoogle Scholar
  54. Imabayashi SI, Kong YT, Watanabe M (2001) Amperometric biosensor for polyphenol based on horseradish peroxidase immobilized on gold electrodes. Electroanalysis 13(5):408–412CrossRefGoogle Scholar
  55. Jayani RS, Saxena S, Gupta R (2005) Microbial pectinolytic enzymes: a review. Process Biochem 40(9):2931–2944CrossRefGoogle Scholar
  56. Kashyap DR, Vohra PK, Chopra S et al (2001) Applications of pectinases in the commercial sector: a review. Bioresour Technol 77(3):215–227PubMedCrossRefPubMedCentralGoogle Scholar
  57. Keerti GA, Kumar V et al (2014) Kinetic characterization and effect of immobilized thermostable β-glucosidase in alginate gel beads on sugarcane juice. ISRN Biochem 2014:178498. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Kelly SC, O’Connell PJ, O’Sullivan CK et al (2000) Development of an interferent free amperometric biosensor for determination of L-lysine in food. Anal Chim Acta 412(1):111–119CrossRefGoogle Scholar
  59. Kilinc E, Erdem A, Gokgunnec L et al (1998) Buttermilk based cobalt phthalocyanine dispersed ferricyanide mediated amperometric biosensor for the determination of xanthine. Electroanalysis 10(4):273–275CrossRefGoogle Scholar
  60. Kim J, Jia H, Wang P (2006) Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol Adv 24:296–308PubMedCrossRefPubMedCentralGoogle Scholar
  61. Koch-Schmidt AC, Mosbach K (1977) Studies on conformation of soluble and immobilized enzymes using differential scanning calorimetry. 2. Specific activity and thermal stability of enzymes bound weakly and strongly to Sepharose CL 4B. Biochemistry 16(10):2105–2109PubMedCrossRefPubMedCentralGoogle Scholar
  62. Kosseva MR, Panesar PS, Kaur G et al (2009) Use of immobilised biocatalysts in the processing of cheese whey. Inl J of Biol Macromol 45(5):437–447CrossRefGoogle Scholar
  63. Kosugi Y, Suzuki H (1973) Fixation of cell-bound lipase and properties of the fixed lipase as an immobilized enzyme. J Ferment Technol 51(12):895–903Google Scholar
  64. Kouassi GK, Irudayaraj J, McCarty G (2005) Activity of glucose oxidase functionalized onto magnetic nanoparticles. Biomagn Res Tech 3(1):1–10CrossRefGoogle Scholar
  65. Kourkoutas Y, Bekatorou A, Banat IM et al (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol 21(4):377–397CrossRefGoogle Scholar
  66. Kumar A, Garg S (2009) Immobilization of enzymes and biotechnological perspective. In: Mishra SK, Champaign P (eds) Biotechnology applications. IK International, New Delhi, pp 39–52Google Scholar
  67. Kumar D, Kumar V, Verma AK et al (2013) Kinetic characterization and immobilization of partially purified extracellular alkaline protease from rhizospheric soil bacterium Bacillus subtilis strain EN4. J Pure Appl Microbiol 7(1):727–732Google Scholar
  68. Kumar D, Kumar V, Verma AK et al (2014) Characterization and immobilization of partially purified alkaline protease extracted from rhizospheric soil bacterium, Bacillus megaterium strain EN-2 and Bacillus subtilis strain EN-3. Afr J Microbiol Res 8(1):33–39CrossRefGoogle Scholar
  69. Kwong AW, Gründig B, Hu J et al (2000) Comparative study of hydrogel-immobilized L-glutamate oxidases for a novel thick-film biosensor and its application in food samples. Biotechnol Lett 22(4):267–272CrossRefGoogle Scholar
  70. Langmuir I, Schaefer VJ (1938) Activities of urease and pepsin monolayers. J Am Chem Soc 60(6):1351–1360CrossRefGoogle Scholar
  71. Leca B, Marty JL (1997) Reusable ethanol sensor based on a NAD+-dependent dehydrogenase without coenzyme addition. Anal Chim Acta 340(1–3):143–148CrossRefGoogle Scholar
  72. Maines A, Prodromidis MI, Tzouwara-Karayanni SM et al (2000) An enzyme electrode for extended linearity citrate measurements based on modified polymeric membranes. Electroanalysis 12(14):1118–1123CrossRefGoogle Scholar
  73. Marconi E, Baldino C, Messia MC et al (1998) Determination of damaged starch in wheat flour using an electrochemical bienzyme maltose probe. Anal Lett 31(5):733–749CrossRefGoogle Scholar
  74. Mata-Alvarez J, Mace S, Llabres P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol 74(1):3–16CrossRefGoogle Scholar
  75. Matoba S, Tsuneda S, Saito K et al (1995) Highly efficient enzyme recovery using a porous membrane with immobilized tentacle polymer chains. Nat Biotechnol 13(8):795–797CrossRefGoogle Scholar
  76. McLaren AD (1957) Concerning the pH dependence of enzyme reactions on cells, particulates and in solution. Science 125(3250):697–697CrossRefGoogle Scholar
  77. Mello LD, Kubota LT (2002) Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem 77(2):237–256CrossRefGoogle Scholar
  78. Min K, Yoo YJ (2014) Recent progress in nanobiocatalysis for enzyme immobilization and its application. Biotechnol Bioprocess Eng 19(4):553CrossRefGoogle Scholar
  79. Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11(3):266–277PubMedCrossRefPubMedCentralGoogle Scholar
  80. Moretto LM, Ugo P, Zanata M et al (1998) Nitrate biosensor based on the ultrathin-film composite membrane concept. Anal Chem 70(10):2163–2166CrossRefGoogle Scholar
  81. Nagayasu T, Miyanaga M, Tanaka T et al (1994) Synthesis of aspartame precursor with an immobilized thermolysin in tert-amyl alcohol. Biotechnol Bioeng 43(11):1118–1123PubMedCrossRefGoogle Scholar
  82. Namdeo M, Bajpai SK (2009) Immobilization of α-amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study. J Mol Catal B Enzym 59(1):134–139CrossRefGoogle Scholar
  83. Nelson JM, Griffin EG (1916) Adsorption of invertase. J Am Chem Soc 38:1109–1916CrossRefGoogle Scholar
  84. Nikolaivits E, Makris G, Topakas E (2017) Immobilization of a cutinase from fusarium oxysporum and application in pineapple flavor synthesis. J Agric Food Chem 65(17):3505–3511PubMedCrossRefGoogle Scholar
  85. Nisha S, Karthick AS, Gobi N (2012) A review on methods, application and properties of immobilized enzyme. Chem Sci Rev Lett 1(3):148–155Google Scholar
  86. Noguer T, Marty JL (1997) Reagentless sensors for acetaldehyde. Anal Lett 30(6):1069–1080CrossRefGoogle Scholar
  87. Okahata Y, Fujimoto Y, Ijiro K (1988) Lipase-lipid complex as a resolution catalyst of racemic alcohols in organic solvents. Tetrahedron Lett 29(40):5133–5134CrossRefGoogle Scholar
  88. Pandey P, Singh SP, Arya SK et al (2007) Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity. Langmuir 23(6):3333–3337PubMedCrossRefPubMedCentralGoogle Scholar
  89. Park IS, Cho YJ, Kim N (2000) Characterization and meat freshness application of a serial three-enzyme reactor system measuring ATP-degradative compounds. Anal Chim Acta 404(1):75–81CrossRefGoogle Scholar
  90. Perez EF, de Oliveira Neto G, Kubota LT (2001) Bi-enzymatic amperometric biosensor for oxalate. Sens Actuator B Chem 72(1):80–85CrossRefGoogle Scholar
  91. Persson M, Bülow L, Mosbach K (1990) Purification and site-specific immobilization of genetically engineered glucose dehydrogenase on thiopropyl-sepharose. FEBS Lett 270(1–2):41–44PubMedCrossRefGoogle Scholar
  92. Petkova GA, Záruba К, Žvátora P et al (2012) Gold and silver nanoparticles for biomolecule immobilization and enzymatic catalysis. Nanoscale Res Lett 7(1):287PubMedPubMedCentralCrossRefGoogle Scholar
  93. Prakasham RS, Devi GS, Laxmi KR et al (2007) Novel synthesis of ferric impregnated silica nanoparticles and their evaluation as a matrix for enzyme immobilization. J Phys Chem 111(10):3842–3847Google Scholar
  94. Pricelius S, Murkovic M, Souter P et al (2009) Substrate specificities of glycosidases from Aspergillus species pectinase preparations on elderberry anthocyanins. J Agric Food Chem 57(3):1006–1012PubMedCrossRefGoogle Scholar
  95. Quiocho FA, Richards FM (1964) Intermolecular cross linking of a protein in the crystalline state: carboxypeptidase-A. PNAS 52(3):833–839PubMedCrossRefGoogle Scholar
  96. Riaz A, Qader SAU, Anwar A et al (2009) Immobilization of a thermostable α-amylase on calcium alginate beads from Bacillus subtilis KIBGE-HAR. Aust J Basic Appl Sci 3(3):2883–2887Google Scholar
  97. Ribeiro MH (2011) Naringinases: occurrence, characteristics, and applications. Appl Microbiol Biotech 90(6):1883–1895CrossRefGoogle Scholar
  98. Roig GM, BelloF J, Velasco GF et al (1987) Applications of immobilized enzymes. Biochem Educ 15:198–208CrossRefGoogle Scholar
  99. Romani A, Minunni M, Mulinacci N et al (2000) Comparison among differential pulse voltammetry, amperometric biosensor, and HPLC/DAD analysis for polyphenol determination. J Agric Food Chem 48(4):1197–1203PubMedCrossRefGoogle Scholar
  100. Roy I, Sardar M, Gupta MN (2005) Cross-linked alginate–guar gum beads as fluidized bed affinity media for purification of jacalin. Biochem Eng J 23(3):193–198CrossRefGoogle Scholar
  101. Sakai T, Sakamoto T, Hallaert J et al (1993) Pectin, pectinase, and protopectinase: production, properties and applications. Adv Appl Microbiol 39:213–294PubMedCrossRefGoogle Scholar
  102. Sarkar P, Tothill IE, Setford SJ et al (1999) Screen-printed amperometric biosensors for the rapid measurement of L-and D-amino acids. Analyst 124(6):865–870PubMedCrossRefGoogle Scholar
  103. Sekine Y, Hall EA (1998) A lactulose sensor based on coupled enzyme reactions with a ring electrode fabricated from tetrathiafulvalen–tetracyanoquinodimetane. Biosens Bioelectron 13(9):995–1005PubMedCrossRefGoogle Scholar
  104. Shahrestani H, Taheri-Kafrani A, Soozanipour A et al (2016) Enzymatic clarification of fruit juices using xylanase immobilized on 1, 3, 5-triazine-functionalized silica-encapsulated magnetic nanoparticles. Biochem Eng J 109:51–58CrossRefGoogle Scholar
  105. Sheldon RA (2007) Cross-linked enzyme aggregates (CLEA® s): stable and recyclable biocatalysts. Biochem Soc Trans 35:1583–1587PubMedCrossRefGoogle Scholar
  106. Shojaei F, Homaei A, Taherizadeh MR et al (2017) Characterization of biosynthesized chitosan nanoparticles from Penaeus vannamei for immobilization of P. vannamei protease: an eco-friendly nanobiocatalyst. Int J Food Prop 20:1413–1423. CrossRefGoogle Scholar
  107. Sirisha VL, Jain A, Jain A (2016) Chapter nine-enzyme immobilization: an overview on methods, support material, and applications of immobilized enzymes. Adv Food Nutr Res 79:179–211PubMedCrossRefGoogle Scholar
  108. Soria F, Ellenrieder G, Oliveira GB et al (2012) α-L-Rhamnosidase of Aspergillus terreus immobilized on ferromagnetic supports. Appl Microbiol Biotechnol 93(3):1127–1134PubMedCrossRefGoogle Scholar
  109. Stone I (1955) U.S. Patent No. 2,717,852. U.S. Patent and Trademark Office, Washington, DC, 13 September 1955Google Scholar
  110. Stredansky M, Pizzariello A, Stredanska S et al (1999) Determination of D-fructose in foodstuffs by an improved amperometric biosensor based on a solid binding matrix. Anal Commun 36(2):57–61CrossRefGoogle Scholar
  111. Su E, Xia T, Gao L et al (2010) Immobilization of β-glucosidase and its aroma-increasing effect on tea beverage. Food Bioprod Process 88(2):83–89CrossRefGoogle Scholar
  112. Tallapragada P, Dikshit R, Jadhav A et al (2017) Partial purification and characterization of amylase enzyme under solid state fermentation from Monascus sanguineus. J Genet Eng Biotech 15:95. CrossRefGoogle Scholar
  113. Tor R, Dror Y, Freeman A (1989) Enzyme stabilization by bilayer “encagement”. Enzyme Microb Tech 11(5):306–312CrossRefGoogle Scholar
  114. Vega FA, Nunez CG, Weigel B et al (1998) On line monitoring of galactoside conjugates and glycerol by flow injection analysis. Anal Chim Acta 373(1):57–62CrossRefGoogle Scholar
  115. Verma ML, Barrow CJ, Puri M (2013) Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Appl Microbiol Biotechnol 97(1):23–39PubMedCrossRefPubMedCentralGoogle Scholar
  116. Vianello F, Zennaro L, Di Paolo ML et al (2000) Preparation, morphological characterization, and activity of thin films of horseradish peroxidase. Biotechnol Bioeng 68(5):488–495PubMedCrossRefPubMedCentralGoogle Scholar
  117. Wang P, Sergeeva MV, Lim L et al (1997) Biocatalytic plastics as active and stable materials for biotransformations. Nat Biotechnol 15(8):789–793PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Archana Singh
    • 1
  • Manendra Singh Negi
    • 1
  • Ashutosh Dubey
    • 1
  • Vinod Kumar
    • 2
  • A. K. Verma
    • 1
  1. 1.Department of Biochemistry, College of Basic Sciences and HumanitiesG. B. Pant University of Agriculture and TechnologyPantnagarIndia
  2. 2.College of AgricultureAgriculture University, JodhpurNagaurIndia

Personalised recommendations