Advertisement

Enzymes in Bioconversion and Food Processing

  • Rajeev Ravindran
  • Amit K. JaiswalEmail author
Chapter

Abstract

Enzymes are biological catalysts that can be found in every living system. It takes part in various reactions and is mainly found in plants, animals, and microorganisms. The introduction of enzymes in the food industries began with the application of chymosin, derived from the calf stomach, for the production of cheese. Since then, advances in biotechnology have paved way to the application of enzymes synthesized by recombinant microorganisms. Living organisms achieve bioconversion of a substance with the help of enzymes. Due to high substrate specificity, enzymes find applicability in baking, dairy, detergent, leather, and beverage industries. Additionally, enzymes also play a vital role in wastewater treatment, animal nutrition, paper manufacturing, and pharmaceutical and biofuel applications. Furthermore, the discovery of cellulose- and lipid-hydrolyzing enzymes along with the extensive applications of genetic engineering has provided momentum to producing alternative fuel sources from plant-based waste on a huge scale. This chapter deals with various enzymes typically applied in bioconversion and food processing.

Keywords

Enzymes Hydrolysis Fermentation Food processing Bioconversion 

References

  1. Ali S, Mahmood S, Alam R et al (1989) Culture condition for production of glucoamylase from rice bran by Aspergillus terreus. MIRCEN J Appl Microbiol Biotechnol 5(4):525–532CrossRefGoogle Scholar
  2. Altaner C, Saake B, Tenkanen M et al (2003) Regioselective deacetylation of cellulose acetates by acetyl xylan esterases of different CE-families. J Biotechnol 105(1–2):95–104PubMedCrossRefGoogle Scholar
  3. Andersen LN, Bech L, Halkier T et al (2003) Transglutaminases from oomycetes. US Patent 6428993B1 (19 Jan 1995)Google Scholar
  4. Aravindan R, Anbumathi P, Viruthagiri T (2007) Lipase applications in food industry. Indian J Biotechnol 6(2):141Google Scholar
  5. Aszalos A (1978) Classification of enzymes. Enzyme Anesth:71–88Google Scholar
  6. Blake C, Koenig D, Mair G et al (1965) Structure of hen egg-white lysozyme: a three-dimensional Fourier synthesis at 2 Å resolution. Nature 206(4986):757–761PubMedCrossRefGoogle Scholar
  7. Bonekamp F, Oosterom J (1994) On the safety of Kluyveromyces lactis – a review. Appl Microbiol Biotechnol 41(1):1–3CrossRefGoogle Scholar
  8. Cai H, Li Y, Zhao M (2015) Immobilization, Regiospecificity characterization and application of Aspergillus oryzae lipase in the enzymatic synthesis of the structured lipid 1,3-Dioleoyl-2-Palmitoylglycerol. PLoS One 10(7):e0133857PubMedPubMedCentralCrossRefGoogle Scholar
  9. Cantarel BL, Coutinho PM, Rancurel C et al (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37(suppl 1):D233–D238PubMedCrossRefGoogle Scholar
  10. Cartwright AM, Lim EK, Kleanthous C et al (2008) A kinetic analysis of regiospecific glucosylation by two glycosyltransferases of Arabidopsis thaliana: domain swapping to introduce new activities. J Biol Chem 283(23):15724–15731PubMedPubMedCentralCrossRefGoogle Scholar
  11. Celestino K, Cunha R et al (2006) Characterization of a beta-glucanase produced by Rhizopus microsporus var. microsporus, and its potential for application in the brewing industry. BMC Biochem 7(1):23PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chang A, Singh S, Helmich KE et al (2011) Complete set of glycosyltransferase structures in the calicheamicin biosynthetic pathway reveals the origin of regiospecificity. Proc Natl Acad Sci 108(43):17649–17654PubMedCrossRefGoogle Scholar
  13. Chauhan PS, Puri N, Sharma P et al (2012) Mannanases: microbial sources, production, properties and potential biotechnological applications. Appl Microbiol Biotechnol 93(5):1817–1830PubMedCrossRefGoogle Scholar
  14. Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14(4):438–443PubMedCrossRefGoogle Scholar
  15. Chi Z, Chi Z, Zhang T et al (2009) Inulinase-expressing microorganisms and applications of inulinases. Appl Microbiol Biotechnol 82(2):211–220PubMedCrossRefGoogle Scholar
  16. Christgau S, Andersen L, Kauppinen S et al (1994) Enzyme exhibiting mannanase activity. US Patent 5795764A (30 April 1993)Google Scholar
  17. Clarke J, Davidson K, Rixon J et al (2000) A comparison of enzyme-aided bleaching of softwood paper pulp using combinations of xylanase, mannanase and α-galactosidase. Appl Microbiol Biotechnol 53(6):661–667PubMedCrossRefGoogle Scholar
  18. Collet P, Lardon L, Hélias A et al (2014) Biodiesel from microalgae–life cycle assessment and recommendations for potential improvements. Renew Energy 71:525–533CrossRefGoogle Scholar
  19. Cortez J, Bonner PL, Griffin M et al (2004) Application of transglutaminases in the modification of wool textiles. Enzym Microb Technol 34(1):64–72CrossRefGoogle Scholar
  20. Cuperus RA, Herweijer MA, Van Ooijen AJ et al (2003) Cleaning compositions containing plant cell wall degrading enzymes and their use in cleaning methods. US Patent 20030040454A1 (17 June 1994)Google Scholar
  21. Dalal S, Balasubramanian S, Regan L (1997) Protein alchemy: changing beta-sheet into alpha-helix. Nat Struct Biol 4(7):548–552PubMedCrossRefPubMedCentralGoogle Scholar
  22. Das SP, Ravindran R, Ahmed S et al (2012) Bioethanol production involving recombinant C. thermocellum hydrolytic hemicellulase and fermentative microbes. Appl Biochem Biotechnol 167(6):1475–1488PubMedCrossRefGoogle Scholar
  23. de Bales SA, Castillo J (1979) Production of lactase by Candida pseudotropicalis grown in Whey. Appl Environ Microbiol 37(6):1201–1205PubMedPubMedCentralGoogle Scholar
  24. Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol 27(4):197–216PubMedCrossRefGoogle Scholar
  25. Diler G, Chevallier S, Pöhlmann I et al (2015) Assessment of amyloglucosidase activity during production and storage of laminated pie dough. Impact on raw dough properties and sweetness after baking. J Cereal Sci 61(0):63–70CrossRefGoogle Scholar
  26. Doi RH, Kosugi A (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2(7):541–551PubMedCrossRefGoogle Scholar
  27. Dong XY, Xiu ZL, Li S et al (2010) Dielectric barrier discharge plasma as a novel approach for improving 1, 3-propanediol production in Klebsiella pneumoniae. Biotechnol Lett 32(9):1245–1250PubMedCrossRefGoogle Scholar
  28. Duan X, Sun X, Wu J (2014) Optimization of fermentation conditions of recombinant Pichia pastoris that can produce β-galactosidase. Genomics Appl Biol 33(6):1288–1293Google Scholar
  29. El-Batal AI, ElKenawy NM, Yassin AS et al (2015) Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnol Rep 5(0):31–39CrossRefGoogle Scholar
  30. Espinosa-Ramírez J, Pérez-Carrillo E, Serna-Saldívar SO (2014) Maltose and glucose utilization during fermentation of barley and sorghum lager beers as affected by β-amylase or amyloglucosidase addition. J Cereal Sci 60(3):602–609CrossRefGoogle Scholar
  31. Fernandez-Lafuente R (2010) Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. J Mol Catal B Enzym 62(3–4):197–212CrossRefGoogle Scholar
  32. Ferreira NL, Margeot A, Blanquet S et al (2014) Chapter 17: Use of cellulases from Trichoderma reesei in the twenty-first century – Part I: Current industrial uses and future applications in the production of second ethanol generation. In: Kubicek CP (ed) Biotechnology and biology of Trichoderma. Elsevier, Amsterdam, pp 245–261CrossRefGoogle Scholar
  33. Fodje M, Hansson A, Hansson M et al (2001) Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. J Mol Biol 311(1):111–122PubMedCrossRefGoogle Scholar
  34. Goldberg RN, Tewari YB, Bell D et al (1993) Thermodynamics of enzyme-catalyzed reactions: Part 1. Oxidoreductases. J Phys Chem Ref Data 22(2):515–582CrossRefGoogle Scholar
  35. Gomes J, Terler K, Kratzer R (2007) Production of thermostable β-mannosidase by a strain of Thermoascus aurantiacus: isolation, partial purification and characterization of the enzyme. Enzym Microb Technol 40(4):969–975CrossRefGoogle Scholar
  36. Goswami GK, Pathak RR (2013) Microbial xylanases and their biomedical applications: a review. Int J Basic Clin Pharmacol 2(3):237–246CrossRefGoogle Scholar
  37. Gupta R, Beg Q, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59(1):15–32PubMedCrossRefGoogle Scholar
  38. Hill M, Buchan A (2002) The Canadian Activase for Stroke Effectiveness Study (CASES): final results. Stroke 33(1):359–359CrossRefGoogle Scholar
  39. Horrobin T, Hao Tran C, Crout D (1998) Esterase-catalysed regioselective 6-deacylation of hexopyranose per-acetates, acid-catalysed rearrangement to the 4-deprotected products and conversions of these into hexose 4- and 6-sulfates. J Chem Soc Perkin Trans 1(6):1069–1080CrossRefGoogle Scholar
  40. Irimescu R, Furihata K, Hata K et al (2001) Utilization of reaction medium-dependent regiospecificity of Candida antarctica lipase (Novozym 435) for the synthesis of 1, 3-dicapryloyl-2-docosahexaenoyl (or eicosapentaenoyl) glycerol. J Am Oil Chem Soc 78(3):285–290CrossRefGoogle Scholar
  41. Iyer PV, Ananthanarayan L (2008) Enzyme stability and stabilization – aqueous and non-aqueous environment. Process Biochem 43(10):1019–1032CrossRefGoogle Scholar
  42. James JA, Lee BH (1997) Glucoamylases: microbial sources, industrial applications and molecular biology – a review. J Food Biochem 21(6):1–52CrossRefGoogle Scholar
  43. Joshi JB (2014) Phytase – a key to unlock phytate complex. Int J Pure App Biosci 2(6):304–313Google Scholar
  44. Juturu V, Wu JC (2014) Microbial cellulases: engineering, production and applications. Renew Sustain Energy Rev 33(0):188–203CrossRefGoogle Scholar
  45. Kanelli M, Topakas E (2017) Acylation of soluble polysaccharides in a biphasic system catalyzed by a CE2 acetyl esterase. Carbohydr Polym 163:208–215PubMedCrossRefGoogle Scholar
  46. Kieliszek M, Misiewicz A (2014) Microbial transglutaminase and its application in the food industry. Rev Folia Microbiol 59(3):241–250CrossRefGoogle Scholar
  47. Kies AK (2014) Authorised EU health claims related to the management of lactose intolerance: reduced lactose content, dietary lactase supplements and live yoghurt cultures. In: Sadler MJ (ed) Foods, nutrients and food ingredients with authorised Eu health claims, 1st edn. Woodhead Publishing, SawstonGoogle Scholar
  48. Klotz IM, Darnall DW, Langerman NR (1975) Quaternary structure of proteins. Protein J 1:1293–1411Google Scholar
  49. Knob A, Beitel SM, Fortkamp D et al (2013) Production, purification, and characterization of a major Penicillium glabrum xylanase using Brewer’s spent grain as substrate. BioMed Res Int 2013:8CrossRefGoogle Scholar
  50. Koshland DE (1995) The key–lock theory and the induced fit theory. Angew Chem Int Ed 33(23–24):2375–2378CrossRefGoogle Scholar
  51. Kulshrestha S, Tyagi P, Sindhi V et al (2013) Invertase and its applications – a brief review. J Pharm Res 7(9):792–797Google Scholar
  52. Kumar P, Satyanarayana T (2009) Microbial glucoamylases: characteristics and applications. Crit Rev Biotechnol 29(3):225–255PubMedCrossRefGoogle Scholar
  53. Kynadi AS, Suchithra TV (2017) Formulation and optimization of a novel media comprising rubber seed oil for PHA production. Ind Crop Prod 105:156–163CrossRefGoogle Scholar
  54. Lu W, Oberthür M, Leimkuhler C et al (2004) Characterization of a regiospecific epivancosaminyl transferase GtfA and enzymatic reconstitution of the antibiotic chloroeremomycin. Proc Natl Acad Sci U S A 101(13):4390–4395PubMedPubMedCentralCrossRefGoogle Scholar
  55. Macris B (1981) Production of extracellular lactase from Fusarium moniliforme. Eur J Appl Microbiol Biotechnol 13(3):161–164CrossRefGoogle Scholar
  56. Mamma D, Hatzinikolaou DG, Christakopoulos P (2004) Biochemical and catalytic properties of two intracellular β-glucosidases from the fungus Penicillium decumbens active on flavonoid glucosides. J Mol Catal B Enzym 27(4–6):183–190CrossRefGoogle Scholar
  57. Mate DM, Alcalde M (2015) Laccase engineering: from rational design to directed evolution. Biotechnol Adv 33(1):25–40PubMedCrossRefGoogle Scholar
  58. McCleary BV, Matheson NK (1983) Action patterns and substrate-binding requirements of β-d-mannanase with mannosaccharides and mannan-type polysaccharides. Carbohydr Res 119:191–219CrossRefGoogle Scholar
  59. Mishra A, Kumar S (2007) Cyanobacterial biomass as N-supplement to agro-waste for hyper-production of laccase from Pleurotus ostreatus in solid state fermentation. Process Biochem 42(4):681–685CrossRefGoogle Scholar
  60. Mohammadi M, Habibi Z, Dezvarei S et al (2014) Improvement of the stability and selectivity of Rhizomucor miehei lipase immobilized on silica nanoparticles: selective hydrolysis of fish oil using immobilized preparations. Process Biochem 49(8):1314–1323CrossRefGoogle Scholar
  61. Motoki M, Seguro K (1998) Transglutaminase and its use for food processing. Trends Food Sci Technol 9(5):204–210CrossRefGoogle Scholar
  62. Mukherji R, Varshney NK, Panigrahi P et al (2014) A new role for penicillin acylases: degradation of acyl homoserine lactone quorum sensing signals by Kluyvera citrophila penicillin G acylase. Enzym Microb Technol 56:1–7CrossRefGoogle Scholar
  63. Naganagouda K, Salimath P, Mulimani V (2009) Purification and characterization of endo-beta-1, 4 mannanase from Aspergillus niger for application in food processing industry. J Microbiol Biotechnol 19(10):1184–1190PubMedPubMedCentralGoogle Scholar
  64. Nakkharat P, Haltrich D (2006) Purification and characterisation of an intracellular enzyme with β-glucosidase and β-galactosidase activity from the thermophilic fungus Talaromyces thermophilus CBS 236.58. J Biotechnol 123(3):304–313PubMedCrossRefPubMedCentralGoogle Scholar
  65. Neumann NP, Lampen JO (1967) Purification and properties of yeast invertase. Biochemist 6(2):468–475CrossRefGoogle Scholar
  66. Noda S, Miyazaki T, Tanaka T et al (2013) High-level production of mature active-form Streptomyces mobaraensis transglutaminase via pro-transglutaminase processing using Streptomyces lividans as a host. Biochem Eng J 74(0):76–80CrossRefGoogle Scholar
  67. Pauletti GM, Gangwar S, Wang B et al (1997) Esterase-sensitive cyclic prodrugs of peptides: evaluation of a phenylpropionic acid Promoiety in a model hexapeptide. Pharm Res 14(1):11–17PubMedCrossRefGoogle Scholar
  68. Pillai P, Mandge S, Archana G (2011) Statistical optimization of production and tannery applications of a keratinolytic serine protease from Bacillus subtilis P13. Process Biochem 46(5):1110–1117CrossRefGoogle Scholar
  69. Polizeli M, Rizzatti A, Monti R et al (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67(5):577–591PubMedCrossRefGoogle Scholar
  70. Pollard DJ, Woodley JM (2007) Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol 25(2):66–73PubMedCrossRefGoogle Scholar
  71. Prakash B, Vidyasagar M, Madhukumar MS et al (2009) Production, purification, and characterization of two extremely halotolerant, thermostable, and alkali-stable α-amylases from Chromohalobacter sp. TVSP 101. Process Biochem 44(2):210–215CrossRefGoogle Scholar
  72. Prasad MP, Manjunath K (2011) Comparative study on biodegradation of lipid-rich wastewater using lipase producing bacterial species. Indian J Biotechnol 10:121–124Google Scholar
  73. Radha S, Nithya V, Himakiran R et al (2011) Production and optimization of acid protease by Aspergillus spp under submerged fermentation. Arch Appl Sci Res 3:155–163Google Scholar
  74. Ramalingam C, Harris AD (2010) Xylanases and its application in food industry: a review. J Exp Sci 1(7)Google Scholar
  75. Rasor JP, Voss E (2001) Enzyme-catalyzed processes in pharmaceutical industry. Appl Catal A Gen 221(1):145–158CrossRefGoogle Scholar
  76. Ravindran R, Jaiswal AK (2016) Microbial enzyme production using lignocellulosic food industry wastes as feedstock: a review. Bioengineering 3(4):30.  https://doi.org/10.3390/bioengineering3040030 CrossRefPubMedCentralPubMedGoogle Scholar
  77. Richards FM, Vithayathil PJ (1959) The preparation of subtilisin-modified ribonuclease and the separation of the peptide and protein components. J Biol Chem 234(6):1459–1465PubMedGoogle Scholar
  78. Robinson-Rechavi M, Alibés A, Godzik A (2006) Contribution of electrostatic interactions, compactness and quaternary structure to protein thermostability: lessons from structural genomics of Thermotoga maritima. J Mol Biol 356(2):547–557PubMedCrossRefGoogle Scholar
  79. Rodríguez Couto S, Toca Herrera JL (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24(5):500–513PubMedCrossRefGoogle Scholar
  80. Rohan (2016) Title of subordinate document. In: Industrial enzymes market worth 6.30 Billion USD by 2022. Markets and markets. Available via DIALOG. https://www.marketsandmarkets.com/PressReleases/industrial-enzymes.asp. Accessed 26 Feb 2018
  81. Roohi, Kuddus M (2014) Bio-statistical approach for optimization of cold-active α-amylase production by novel psychrotolerant M. foliorum GA2 in solid state fermentation. Biocatal Agric Biotechnol 3(2):175–181CrossRefGoogle Scholar
  82. Sahnoun M, Kriaa M, Elgharbi F et al (2015) Aspergillus oryzae S2 alpha-amylase production under solid state fermentation: optimization of culture conditions. Int J Biol Macromol 75(0):73–80PubMedCrossRefGoogle Scholar
  83. Sakai T, Sakamoto T, Hallaert J et al (1993) Pectin, pectinase, and protopectinase: production, properties, and applications. In: Saul N, Allen IL (eds) Advances in applied microbiology. Academic, New YorkGoogle Scholar
  84. Sawant R, Nagendran S (2014) Protease: an enzyme with multiple industrial applications. World J Pharm Sci 3:568–579Google Scholar
  85. Selle PH, Ravindran V (2007) Microbial phytase in poultry nutrition. Anim F Sci Technol 135(1–2):1–41Google Scholar
  86. Sen SK, Dora TK, Bandyopadhyay B et al (2014) Thermostable alpha-amylase enzyme production from hot spring isolates Alcaligenes faecalis SSB17 – statistical optimization. Biocatal Agric Biotechnol 3(4):218–226CrossRefGoogle Scholar
  87. Servili M, Begliomini AL, Montedoro G et al (1992) Utilisation of a yeast pectinase in olive oil extraction and red wine making processes. J Sci Food Agric 58(2):253–260CrossRefGoogle Scholar
  88. Seyis I, Aksoz N (2004) Production of lactase by Trichoderma sp. Food Technol Biotechnol 42(2):121–124Google Scholar
  89. Shin H, Kong J, Lee J et al (2000) Syntheses of hydroxybenzyl-α-glucosides by amyloglucosidase-catalyzed transglycosylation. Biotechnol Lett 22(4):321–325CrossRefGoogle Scholar
  90. Shraddha SR, Sehgal S et al (2011) Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme Res 11Google Scholar
  91. Singh H, Soni SK (2001) Production of starch-gel digesting amyloglucosidase by Aspergillus oryzae HS-3 in solid state fermentation. Process Biochem 37(5):453–459CrossRefGoogle Scholar
  92. Singhania RR, Saini JK, Saini R et al (2014) Bioethanol production from wheat straw via enzymatic route employing Penicillium janthinellum cellulases. Bioresour Technol 169(0):490–495PubMedCrossRefGoogle Scholar
  93. Soltis DE (2012) Isozymes in plant biology. Springer, DordrechtGoogle Scholar
  94. Speranza P, Ribeiro APB, Macedo GA (2016) Application of lipases to regiospecific interesterification of exotic oils from an Amazonian area. J Biotechnol 218:13–20PubMedCrossRefGoogle Scholar
  95. Suali E, Sarbatly R (2012) Conversion of microalgae to biofuel. Renew Sustain Energy Rev 16(6):4316–4342CrossRefGoogle Scholar
  96. Sundarram A, Murthy TPK (2014) α-amylase production and applications: a review. J Appl Environ Microbiol 2(4):166–175Google Scholar
  97. Suzuki U, Yoshimura K, Takaishi M (1907) About the enzyme “phytase”, which splits “anhydro-oxymethylene diphosphoric acid”. Bull Coll Agric Tokyo Imp Univ 7:503–512Google Scholar
  98. Talukder MMR, Wu JC, Van Nguyen TB et al (2009) Novozym 435 for production of biodiesel from unrefined palm oil: comparison of methanolysis methods. J Mol Catal B Enzyme 60(3–4):106–112CrossRefGoogle Scholar
  99. Tang XJ, He GQ, Chen QH et al (2004) Medium optimization for the production of thermal stable β-glucanase by Bacillus subtilis ZJF-1A5 using response surface methodology. Bioresour Technol 93(2):175–181PubMedCrossRefGoogle Scholar
  100. Vandamme EJ, Derycke DG (1983) Microbial inulinases: fermentation process, properties, and applications. Adv Appl Microbiol 29(1):983Google Scholar
  101. Várnai A, Mäkelä MR, Djajadi DT et al (2014) Chapter 4: Carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion. In: Sima S, Geoffrey Michael G (eds) Advances in applied microbiology. Academic/Elsevier, Amsterdam, pp 103–165Google Scholar
  102. Vellard M (2003) The enzyme as drug: application of enzymes as pharmaceuticals. Curr Opin Biotechnol 14(4):444–450PubMedCrossRefPubMedCentralGoogle Scholar
  103. Vijayaraghavan K, Yamini D, Ambika V et al (2009) Trends in inulinase production – a review. Crit Rev Biotechnol 29(1):67–77PubMedCrossRefPubMedCentralGoogle Scholar
  104. Villettaz JC, Steiner D, Trogus H (1984) The use of a beta glucanase as an enzyme in wine clarification and filtration. Am J Enol Vitic 35(4):253–256Google Scholar
  105. Virsu P, Liljeblad A, Kanerva A et al (2001) Preparation of the enantiomers of 1-phenylethan-1,2-diol. Regio- and enantioselectivity of acylase I and Candida antarctica lipases A and B. Tetrahedron Asymmetry 12(17):2447–2455CrossRefGoogle Scholar
  106. Webb OF, Phelps TJ, Bienkowski PR et al (1992) Development of a differential volume reactor system for soil biodegradation studies. Appl Biochem Biotechnol 28:5–19Google Scholar
  107. Yoshida H (1883) LXIII.-Chemistry of lacquer (Urushi). Part I. Communication from the Chemical Society of Tokio. J Chem Soc 43(0):472–486CrossRefGoogle Scholar
  108. Zittan L (1981) Enzymatic hydrolysis of inulin – an alternative way to fructose production. Starch-Stärke 33(11):373–377CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Food Science and Environmental Health, College of Sciences and HealthDublin Institute of TechnologyDublin 1Republic of Ireland

Personalised recommendations