Site-Specific Modification of Nucleobases in Oligonucleotides

  • Yoshiyuki HariEmail author


Site-specific modification of oligonucleotides is a powerful approach for synthesis of oligonucleotides containing various derivatives of nucleobases, sugars, and phosphate backbones. By using this method, the structure of a modified moiety can be effectively screened to find artificial oligonucleotides having desired functions. In fact, many studies using a variety of site-specific modification methods have been reported to date. In this chapter, the site-specific modifications focusing on nucleobases within oligonucleotides are summarized. Moreover, as an experimental example of site-specific modification of an oligonucleotide, the preparation of N,N-disubstituted cytosine derivatives using reaction of 4-triazolylpyrimidin-2-one nucleobase with various secondary amines is demonstrated.


Site-specific modification Oligonucleotide Nucleobase Post-synthetic modification 


  1. 1.
    Goodchild J (1990) Conjugations of oligonucleotides and modified oligonucleotides: a review of their synthesis and properties. Bioconjug Chem 1:165–187CrossRefPubMedGoogle Scholar
  2. 2.
    Verma S, Eckstein F (1998) Modified oligonucleotides: synthesis and strategy for users. Annu Rev Biochem 67:99–134CrossRefPubMedGoogle Scholar
  3. 3.
    Gramlich PME, Wirges CT, Manetto A, Carell T (2008) Postsynthetic DNA modification through the copper-catalyzed azide-alkyne cycloaddition reaction. Angew Chem Int Ed 47:8350–8358CrossRefGoogle Scholar
  4. 4.
    El-Sagheer AH, Brown T (2010) Click chemistry with DNA. Chem Soc Rev 39:1388–1405CrossRefPubMedGoogle Scholar
  5. 5.
    Shaughnessy KH (2015) Palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides. Molecules 20:9419–9454CrossRefPubMedGoogle Scholar
  6. 6.
    Sung WL (1981) Synthesis of 4-triazolopyrimidinone nucleotide and its application in synthesis of 5-methylcytosine-containing oligodeoxyribonucleotides. Nucleic Acids Res 9:6139–6151CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sung WL (1982) Synthesis of 4-(1,2,4-triazol-1-yl)pyrimidin-2(1H)-one ribonucleotide and its application in synthesis of oligoribonucleotides. J Org Chem 47:3623–3628CrossRefGoogle Scholar
  8. 8.
    Webb TR, Matteucci MD (1986) Sequence-specific cross-linking of deoxyoligonucleotides via hybridization-triggered alkylation. J Am Chem Soc 108:2764–2765CrossRefGoogle Scholar
  9. 9.
    Webb TR, Matteucci MD (1986) Hybridization triggered cross-linking of deoxyoligonucleotides. Nucleic Acids Res 14:7661–7674CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Shigdel UK, Zhang J, He C (2008) Diazirine-based DNA photo-cross-linking probes for the study of protein-DNA interaction. Angew Chem Int Ed 47:90–93CrossRefGoogle Scholar
  11. 11.
    Semenyuk A, Darian E, Liu J, Majumdar A, Cuenoud B, Miller PS, MacKerell AD Jr, Seidman MM (2010) Targeting of an interrupted polypurine:polypyrimidine sequence in mammalian cells by a triplex-forming oligonucleotide containing a novel base analogue. Biochemistry 49:7867–7878CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hari Y, Akabane M, Hatanaka Y, Nakahara M, Obika S (2011) A 4-[(3R,4R)-dihydroxypyrrolidino]pyrimidin-2-one nucleobase for a CG base pair in triplex DNA. Chem Commun 47:4424–4426CrossRefGoogle Scholar
  13. 13.
    Hari Y, Akabane M, Obika S (2013) 2′,4′-BNA bearing a chiral guanidinopyrrolidine-containing nucleobase with potent ability to recognize the CG base pair in a parallel-motif DNA triplex. Chem Commun 49:7421–7423CrossRefGoogle Scholar
  14. 14.
    Fernandez-Forner D, Palom Y, Ikuta S, Pedroso E, Eritja R (1990) Synthesis and characterization of oligodeoxynucleotides containing the mutagenic base analogue 4-O-ethylthymine. Nucleic Acids Res 18:5729–5734CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Xu Y-Z, Zheng Q, Swann PF (1992) Synthesis of DNA containing modified bases by postsynthetic substitution. Synthesis of oligomers containing 4-substituted thymine: O 4-Alkylthymine, 5-methylcytosine, N 4-(dimethylamino)-5-methylcytosine, and 4-thiothymine. J Org Chem 57:3839–3845CrossRefGoogle Scholar
  16. 16.
    Xu Y-Z, Swann PF (1992) Chromatographic separation of oligodeoxynucleotides with identical length: application to purification of oligomers containing a modified base. Anal Biochem 204:185–189CrossRefPubMedGoogle Scholar
  17. 17.
    Robles J, Grandas A, Pedroso E (2001) Synthesis of modified oligonucleotides containing 4-guanidino-2-pyrimidinone nucleobases. Tetrahedron 57:179–194CrossRefGoogle Scholar
  18. 18.
    Allerson CR, Chen SL, Verdine GL (1997) A chemical method for site-specific modification of RNA: the convertible nucleoside approach. J Am Chem Soc 119:7423–7433CrossRefGoogle Scholar
  19. 19.
    Komatsu Y, Kumagai I, Otsuka E (1999) Investigation of the recognition of an important uridine in an internal loop of a hairpin ribozyme prepared using post-synthetically modified oligonucleotides. Nucleic Acids Res 27:4314–4323CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Aviñó A, García RG, Eritja R (2004) Synthesis of oligonucleotides containing 4-thiouridine using the convertible nucleoside approach and the 1-(2-fluorophenyl)-4-methoxypiperidin-4-yl group. Nucleos Nucleot Nucleic Acids 23:1767–1777CrossRefGoogle Scholar
  21. 21.
    Schulhof JC, Molko D, Teoule R (1987) Facile removal of new base protecting groups useful in oligonucleotide synthesis. Tetrahedron Lett 28:51–54CrossRefGoogle Scholar
  22. 22.
    MacMillan AM, Verdine GL (1990) Synthesis of functionally tethered oligodeoxynucleotides by the convertible nucleoside approach. J Org Chem 55:5931–5933CrossRefGoogle Scholar
  23. 23.
    MacMillan AM, Verdine GL (1991) Engineering tethered DNA molecules by the convetible nucleoside approach. Tetrahedron 47:2603–2616CrossRefGoogle Scholar
  24. 24.
    MacMillan AM, Chen L, Verdine GL (1992) Synthesis of an oligonucleotide suicide substrate for DNA methyltransferases. J Org Chem 57:2989–2991CrossRefGoogle Scholar
  25. 25.
    Coleman RS, Siedlecki JM (1992) Synthesis of a 4-thio-2′-deoxyuridine-containing oligonucleotide. Development of the thiocarbonyl group as a linker element. J Am Chem Soc 114:9229–9230CrossRefGoogle Scholar
  26. 26.
    Coleman RS, Kesicki EA (1994) Synthesis and postsynthetic modification of oligonucleotides containing 4-thio-2′-deoxyuridine (ds4U). J Am Chem Soc 116:11636–11642Google Scholar
  27. 27.
    Rublack N, Nguyen H, Appel B, Springstubbe D, Strohbach D, Müller S (2011) Synthesis of specifically modified oligonucleotides for application in structural and functional analysis of RNA. J Nucleic Acids 2011:1–18CrossRefGoogle Scholar
  28. 28.
    Connolly BA, Newman PC (1989) Synthesis and properties of oligonucleotides containing 4-thiothymidine, 5-methyl-2-pyrimidinone-1-β-d-(2′-deoxyribose) and 2-thiothymidine. Nucleic Acids Res 17:4957–4974CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Draper DE (1984) Attachment of reporter groups to specific, selected cytidine residues in RNA using a bisulfite-catalyzed transamination reaction. Nucleic Acids Res 12:989–1002CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Miller PS, Cushman CD (1992) Selective modification of cytosines in oligodeoxyribonucleotides. Bioconjug Chem 3:74–79CrossRefPubMedGoogle Scholar
  31. 31.
    Huang C-Y, Cushman CD, Miller PS (1993) Triplex formation by an oligonucleotide containing N 4-(3-acetamidopropyl)cytosine. J Org Chem 58:5048–5049CrossRefGoogle Scholar
  32. 32.
    Okamura H, Tanigushi Y, Sasaki S (2013) N-(Guanidinoethyl)-2′-deoxy-5-methylisocytidine exhibits selective recognition of a CG interrupting site for the formation of anti-parallel triplexes. Org Biomol Chem 11:3918–3924CrossRefPubMedGoogle Scholar
  33. 33.
    Maier MA, Barber-Peoc’h I, Manoharan M (2002) Postsynthetic guanidinylation of primary amino groups in the minor and major grooves of oligonucleotides. Tetrahedron Lett 43:7613–7616CrossRefGoogle Scholar
  34. 34.
    Akabane-Nakata M, Obika S, Hari Y (2014) Synthesis of oligonucleotides containing N,N-disubstituted 3-deazacytosine nucleobases by post-elongation modification and their triplex-forming ability with double-stranded DNA. Org Biomol Chem 12:9011–9015CrossRefPubMedGoogle Scholar
  35. 35.
    Kim SJ, Stone MP, Harris CM, Harris TM (1992) A postoligomerization synthesis of oligodeoxynucleotides containing polycyclic aromatic hydrocarbon adducts at the N6 position of deoxyadenosine. J Am Chem Soc 114:5480–5481CrossRefGoogle Scholar
  36. 36.
    Harris CM, Zhou L, Strand EA, Harris TM (1991) New strategy for the synthesis of oligodeoxynucleotides bearing adducts at exocyclic amino sites of purine nucleosides. J Am Chem Soc 113:4328–4329CrossRefGoogle Scholar
  37. 37.
    Wang H, Kozekov ID, Kozekova A, Tamura P, Marnett LJ, Harris TM, Rizzo CJ (2006) Site-specific synthesis of oligonucleotides containing malondialdehyde adducts of deoxyguanosine and deoxyadenosine via a post-synthetic modification strategy. Chem Res Toxicol 19:1467–1474CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kierzek E, Kierzek R (2003) The synthesis of oligoribonucleotides containing N 6 -alkyladenosines and 2-methylthio-N 6 -alkyladenosines via post-synthetic modification of precursor oligomers. Nucleic Acids Res 31:4461–4471CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Gao H, Fathi R, Gaffney BL, Goswami B, Kung P-P, Rhee Y, Jin R, Jones RA (1992) 6-O-(Pentafluorophenyl)-2′-deoxyguanosine: a versatile synthon for nucleoside and oligonucleotide synthesis. J Org Chem 57:6954–6959CrossRefGoogle Scholar
  40. 40.
    Xu Y-Z, Zheng Q, Swann PF (1992) Synthesis and duplex stability of oligodeoxynucleotides containing 6-mercaptopurine. Tetrahedron Lett 33:5837–5840CrossRefGoogle Scholar
  41. 41.
    Xu Y-Z, Zheng Q, Swann PF (1992) Synthesis by post-synthetic substitution of oligomers containing guanine modified at the 6-position with S-, N-, O-derivatives. Tetrahedron 48:1729–1740CrossRefGoogle Scholar
  42. 42.
    Xu Y-Z (1996) Post-synthetic introduction of labile functionalities onto purine residues via 6-methylthiopurines in oligodeoxyribonucleotides. Tetrahedron 52:10737–10750CrossRefGoogle Scholar
  43. 43.
    Ferentz AE, Verdine GL (1991) Disulfide cross-linked oligonucleotides. J Am Chem Soc 113:4000–4002CrossRefGoogle Scholar
  44. 44.
    Erlanson DA, Chen L, Verdine GL (1993) DNA methylation through a locally unpaired intermediate. J Am Chem Soc 115:12583–12584CrossRefGoogle Scholar
  45. 45.
    Schmid N, Behr J-P (1995) Recognition of DNA sequences by strand replacement with polyamino-oligonucleotides. Tetrahedron Lett 36:1447–1450CrossRefGoogle Scholar
  46. 46.
    Ono A, Haginoya N, Kiyokawa M, Minakawa N, Matsuda A (1994) Nucleosides and nucleotides. 127. A novel and convenient post-synthetic modification method for the synthesis of oligodeoxyribonucleotides carrying amino linkers at the 5-position of 2′-deoxyuridine. Bioorg Med Chem Lett 4:361–366CrossRefGoogle Scholar
  47. 47.
    Haginoya N, Ono A, Nomura Y, Ueno Y, Matsuda A (1997) Nucleosides and nucleotides. 160. Oligodeoxyribonucleotides containing 5-(N-aminoalkyl)carbamoyl-2′-deoxyuridines by a new postsynthetic modification method and their thermal stability and nuclease-resistance properties. Bioconjug Chem 8:271–280CrossRefPubMedGoogle Scholar
  48. 48.
    Ueno Y, Ogawa A, Nakagawa A, Matsuda A (1996) Nucleosides and nucleotides. 162. Facile synthesis of 5′,5′-linked oligodeoxyribonucleotides with the potential for triple-helix formation. Bioorg Med Chem Lett 6:2817–2822CrossRefGoogle Scholar
  49. 49.
    Nomura Y, Ueno Y, Matsuda A (1997) Site-specific introduction of functional groups into phosphodiester oligodeoxynucleotides and their thermal stability and nuclease-resistance properties. Nucleic Acids Res 25:2784–2791CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ono A, Dan A, Matsuda A (1993) Nucleosides and nucleotides. 121. Synthesis of oligonucleotides carrying linker groups at the 1′-position of sugar residues. Bioconjug Chem 4:499–508CrossRefPubMedGoogle Scholar
  51. 51.
    Nomura Y, Haginoya N, Ueno Y, Matsuda A (1996) Nucleosides and nucleotides. 161. Incorporation of 5-(N-aminoalkyl)carbamoyl-2′-deoxycytidines into oligodeoxyribonucleotides by a convenient post-synthetic modification method. Bioorg Med Chem Lett 6:2811–2816CrossRefGoogle Scholar
  52. 52.
    Lietard J, Leumann CJ (2012) Synthesis, pairing, and cellular uptake properties of C(6′)-functionalized tricycle-DNA. J Org Chem 77:4566–4577CrossRefPubMedGoogle Scholar
  53. 53.
    Hari Y, Osawa T, Obika S (2012) Synthesis and duplex-forming ability of oligonucleotides containing 4′-carboxythymidine analogs. Org Biomol Chem 10:9639–9649CrossRefPubMedGoogle Scholar
  54. 54.
    Schlegel MK, Hütter J, Eriksson M, Lepenies B, Seeberger PH (2011) Defined presentation of carbohydrates on a duplex DNA scaffold. Chembiochem 12:2791–2800CrossRefPubMedGoogle Scholar
  55. 55.
    Kahl JD, Greenberg MM (1999) Introducing structural diversity in oligonucleotides via photolabile, convertible C5-substituted nucleotides. J Am Chem Soc 121:597–604CrossRefGoogle Scholar
  56. 56.
    Beilstein AE, Grinstaff MW (2000) On-column derivatization of oligonucleotides with ferrocene. Chem Commun:509–510Google Scholar
  57. 57.
    Khan SI, Grinstaff MW (1999) Palladium(0)-catalyzed modification of oligonucleotides during automated solid-phase synthesis. J Am Chem Soc 121:4704–4705CrossRefGoogle Scholar
  58. 58.
    Rist M, Amann N, Wagenknecht H-A (2003) Preparation of 1-ethylnylpyrene-modified DNA via Sonogashira-type solid-phase couplings and characterization of the fluorescence properties for electron-transfer studies. Eur J Org Chem 2003:2498–2504Google Scholar
  59. 59.
    Mayer E, Valis L, Wagner C, Rist M, Amann N, Wagenknecht H-A (2004) 1-Ethylnylpyrene as a tunable and versatile molecular beacon for DNA. Chembiochem 5:865–868CrossRefPubMedGoogle Scholar
  60. 60.
    Kottysch T, Ahlborn C, Brotzel F, Richert C (2004) Stabilizing or destabilizing oligodeoxynucleotide duplexes containing single 2′-deoxyuridine residues with 5-alkynyl substitutents. Chem Eur J 10:4017–4028CrossRefPubMedGoogle Scholar
  61. 61.
    Baumhof P, Griesang N, Bächle M, Richert C (2006) Synthesis of oligonucleotides with 3′-terminal 5-(3-acylamidopropargyl)-3′-amino-2′,3′-dideoxyuridine residues and their reactivity in single-nucleotide steps of chemical replication. J Org Chem 71:1060–1067CrossRefPubMedGoogle Scholar
  62. 62.
    Filichev V, Pedersen EB (2005) Stable and selective formation of Hoogsteen-type triplexes and duplexes using twisted intercalating nucleic acids (TINA) prepared via postsynthetic Sonogashira solid-phase coupling reactions. J Am Chem Soc 127:14849–14858CrossRefPubMedGoogle Scholar
  63. 63.
    Beyer C, Wagenknecht (2010) In situ azide formation and “click” reaction of nile red with DNA as an alternative postsynthetic route. Chem Commun 46:2230–2231CrossRefGoogle Scholar
  64. 64.
    Wicke L, Engels JW (2012) Postsynthetic on column RNA labeling via Stille coupling. Bioconjug Chem 23:627–642CrossRefPubMedGoogle Scholar
  65. 65.
    Cahová H, Jäschke A (2013) Nucleoside-based diarylethene photoswitches and their facile incorporation into photoswitchable DNA. Angew Chem Int Ed 52:3186–3190CrossRefGoogle Scholar
  66. 66.
    Lercher L, McGouran JF, Kessler BM, Schofield CJ, Davis BG (2013) DNA modification under mild conditions by Suzuki-Miyaura cross-coupling for the generation of functional probes. Angew Chem Int Ed 52:10553–10558CrossRefGoogle Scholar
  67. 67.
    Jeong HS, Hayashi G, Okamoto A (2015) Diazirine photocrosslinking recruits activated FTO demethylase complexes for specific N 6-methyladenosine recognition. ACS Chem Biol 10:1450–1455CrossRefPubMedGoogle Scholar
  68. 68.
    Omumi A, Beach DG, Baker M, Gabryelski W, Manderville RA (2011) Postsynthetic guanine arylation of DNA by Suzuki-Miyaura cross-coupling. J Am Chem Soc 133:42–50CrossRefPubMedGoogle Scholar
  69. 69.
    Minakawa N, Ono Y, Matsuda A (2003) A versatile modification of on-column oligodeoxynucleotides using a copper-catalyzed oxidative acetylenic coupling reaction. J Am Chem Soc 125:11545–11552CrossRefPubMedGoogle Scholar
  70. 70.
    Nakahara M, Kuboyama T, Izawa A, Hari Y, Imanishi T, Obika S (2009) Synthesis and base-pairing properties of C-nucleotides having 1-substituted 1H-1,2,3-triazoles. Bioorg Med Chem Lett 19:3316–3319CrossRefPubMedGoogle Scholar
  71. 71.
    Hari Y, Nakahara M, Pang J, Akabane M, Kuboyama T, Obika S (2011) Synthesis and triplex-forming ability of oligonucleotides bearing 1-substituted 1H-1,2,3-triazole nucleobases. Bioorg Med Chem 19:1162–1166CrossRefPubMedGoogle Scholar
  72. 72.
    Hari Y, Nakahara M, Obika S (2013) Triplex-forming ability of oligonucleotides containing 1-aryl-1,2,3-triazole nucleobases linked via a two atom-length spacer. Bioorg Med Chem 21:5583–5588CrossRefPubMedGoogle Scholar
  73. 73.
    Hari Y, Nakahara M, Ijitsu S, Obika S (2014) The ability of 1-aryltriazole-containing nucleobases to recognize a TA base pair in triplex DNA. Heterocycles 88:377–386CrossRefGoogle Scholar
  74. 74.
    Gutsmiedl K, Wirges CT, Ehmke V, Carell T (2009) Copper-free “click” modification of DNA via nitrile oxide-norbornene 1,3-dipolar cycloaddition. Org Lett 11:2405–2408CrossRefPubMedGoogle Scholar
  75. 75.
    Schoch J, Wiessler M, Jäschke A (2010) Post-synthetic modification of DNA by inverse-electron-demand Diels-Alder reaction. J Am Chem Soc 132:8846–8847CrossRefPubMedGoogle Scholar
  76. 76.
    Arndt S, Wagenknecht H-A (2014) “Photoclick” postsynthetic modification of DNA. Angew Chem Int Ed 53:14580–14582CrossRefGoogle Scholar
  77. 77.
    Borsenberger V, Howorka S (2009) Diene-modified nucleotides for the Diels-Alder-mediated functional tagging of DNA. Nucleic Acids Res 37:1477–1485CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Dey S, Sheppard TL (2001) Ketone-DNA: a versatile postsynthetic DNA decoration platform. Org Lett 3:3983–3986CrossRefPubMedGoogle Scholar
  79. 79.
    Raindlová V, Pohl R, Šanda M, Hocek M (2010) Direct polymerase synthesis of reactive aldehyde-functionalized DNA and its conjugation and staining with hydrazines. Angew Chem Int Ed 49:1064–1066CrossRefGoogle Scholar
  80. 80.
    Raindlová V, Pohl R, Hocek M (2012) Synthesis of aldehyde-linked nucleotides and DNA and their bioconjugations with lysine and peptides through reductive amination. Chem Eur J 18:4080–4087CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Faculty of Pharmaceutical SciencesTokushima Bunri UniversityTokushimaJapan

Personalised recommendations