Advertisement

Nucleosides and Oligonucleotides Incorporating 2-Thiothymine or 2-Thiouracil Derivatives as Modified Nucleobases

  • Kohji Seio
  • Mitsuo Sekine
Chapter

Abstract

Nucleosides containing 2-thiothymine and 2-thiouracil as base moieties have been incorporated into oligonucleotides to enhance their hybridization affinity and base discrimination ability. For the incorporation of these thio-bases into oligonucleotides, efficient methods for the synthesis of thio-modified nucleosides and the incorporation of the thio-nucleosides into oligonucleotides under solid-phase conditions are necessary. In this chapter, the physicochemical properties of thio-modified bases and the methods for the syntheses of 2-thiouridine and 2-thiothymidine are described. In addition, the solid-phase synthesis of oligonucleotides incorporating these thio-nucleosides is described.

Keywords

Sulfur 2-Thiouracil 2-Thiothymine Hydrogen bond London dispersion force 

Abbreviations

Ura

Uracil

s2Ura

2-Thiouracil

Thy

Thymine

s2Thy

2-Thiothymine

U

Uridine

s2U

2-Thiouridine

T

Thymidine

s2T

2-Thiothymidine

rT

Ribothymidine

rs2T

2-Thioribothymidine

Bz

Benzoyl

Tol

Toluoyl

DMTr

4,4′-dimethoxytrityl

References

  1. 1.
    Agris PF, Sierzputowska-Gracz H, Smith W, Malkiewicz A, Sochacka E, Nawrot B (1992) Thiolation of uridine carbon-2 restricts the motional maintain genome integrity. J Am Chem Soc 114:2652–2656CrossRefGoogle Scholar
  2. 2.
    Allred AL (1961) Electronegativity values from thermochemical data. J Inorg Nucl Chem 17:215–221CrossRefGoogle Scholar
  3. 3.
    Aoki Y, Nakamura A, Yokota T, Saito T, Okazawa H, Nagata T, Takeda S (2010) In-frame dystrophin following exon 51-skipping improves muscle pathology and function in the exon 52-deficient mdx mouse. Mol Ther 18:1995–2005CrossRefGoogle Scholar
  4. 4.
    Bartos P, Ebenryter-Olbinska K, Sochacka E, Nawrot B (2015) The influence of the C5 substituent on the 2-thiouridine desulfuration pathway and the conformational analysis of the resulting 4-pyrimidinone products. Bioorg Med Chem 23:5587–5594CrossRefGoogle Scholar
  5. 5.
    Biswal HS, Wategaonkar S (2009) Nature of the N−H···S hydrogen bond. J Phys Chem A 113:12763–12773CrossRefGoogle Scholar
  6. 6.
    Biswal HS, Wategaonkar S (2010) O-H···O versus O-H···S hydrogen bonding. 3. IR-UV double resonance study of hydrogen bonded complexes of p-cresol with diethyl ether and its sulfur analog. J Phys Chem A 114:5947–5973CrossRefGoogle Scholar
  7. 7.
    Bloomfield VA, Crothers DM, Tinoco I Jr (2000) Nucleic acids: structures, properties, and functions, University Science Books Sausalito, Turner DH, p 259 Chapter 8: Conformational changesGoogle Scholar
  8. 8.
    Bondi A (1964) van der Waals Volumes and Radii. J Phys Chem 68:441–451CrossRefGoogle Scholar
  9. 9.
    Chen LC, Su TL, Pankiewicz KW, Watanabe KA (1989) Synthesis of 2,5′-anhydro-2-thiouridine and its conversion to 3′-O-acetyl-2,2′-anhydro- 5′-chloro-5′-deoxy-2-thiouridine. Studies directed toward the synthesis of 2′-deoxy-2′-substituted arabino nucleosides. Nucleosides Nucleotides Nucleic Acids 8:1179–1188CrossRefGoogle Scholar
  10. 10.
    Diop-Frimpong B, Prakash TP, Rajeev KG, Manoharan M, Egli M (2015) Stabilizing contributions of sulfur-modified nucleotides: crystal structure of a DNA duplex with 2’-O-[2-(methoxy)ethyl]-2-thiothymidines. Nucleic Acids Res 33:5297–5307Google Scholar
  11. 11.
    Kuimelis RG, Nambiar KP (1994) Synthesis of oligodeoxynucleotides containing 2-thiopyrimidine residues—a new protection scheme. Nucleic Acids Res 22:1429–1436Google Scholar
  12. 12.
    Kumar RK, Davis DR (1995) Synthesis of oligoribonucleotides containing 2-thiouridine: incorporation of 2-thiouridine phosphoramidite without base protection. J Org Chem 60:7726–7727CrossRefGoogle Scholar
  13. 13.
    Kumar RK, Davis DR (1997) Synthesis and studies on the effect of 2-thiouridine and 4-thiouridine on sugar conformation and RNA duplex stability. Nucleic Acids Res 25:1272–1280CrossRefGoogle Scholar
  14. 14.
    Larsen AT, Fahrenbach AC, Sheng J, Pian J, Szostak JW (2015) Thermodynamic insights into 2-thiouridine-enhanced RNA hybridization. Nucleic Acids Res 43:7675–7687CrossRefGoogle Scholar
  15. 15.
    Lide DR (ed) (2004) CRC handbook of chemistry and physics, 84th edn. CRC Press LLC, Boca RatonGoogle Scholar
  16. 16.
    Masaki Y, Miyasaka R, Hirai K, Tsunoda H, Ohkubo A, Seio K, Sekine M (2012) Prediction of the stability of modified RNA duplexes based on deformability analysis: oligoribonucleotide derivatives modified with 2′-O-cyanoethyl-5-propynyl-2-thiouridine as a promising component. Chem Commn 48:7313–7315CrossRefGoogle Scholar
  17. 17.
    Masaki Y, Inde T, Nagata T, Tanihata J, Kanamori T, Seio K, Takeda S, Sekine M (2015) Enhancement of exon skipping in mdx52 mice by 2′-O-methyl-2-thioribothymidine incorporation into phosphorothioate oligonucleotides. Med Chem Commun 6:630–633CrossRefGoogle Scholar
  18. 18.
    Motorin Y, Helm M (2010) tRNA stabilization by modified nucleotides. Biochemist 49:4934–4944CrossRefGoogle Scholar
  19. 19.
    Mullah B, Andrus A (1995) Oxidative conversion of N-dimethylformamidine nucleosides to N-cyano nucleosides. Tetrahedron Lett 36:4373–4376CrossRefGoogle Scholar
  20. 20.
    Nielsen J, Dahl O (1987) Improved synthesis of (Pri 2 N2) POCH2CH2CN. Nucleic Acids Res 15:3626CrossRefGoogle Scholar
  21. 21.
    Okamoto I, Shohda K, Seio K, Sekine M (2003) A new route to 2‘-O-Alkyl-2-thiouridine derivatives via 4-O-protection of the uracil base and hybridization properties of oligonucleotides incorporating tThese modified nucleoside derivatives. J Org Chem 68:9971–9982CrossRefGoogle Scholar
  22. 22.
    Okamoto I, Seio K, Sekine M (2006) Improved synthesis of oligonucleotides containing 2-thiouridine derivatives by use of diluted iodine solution. Tetrahedron Lett 47:583–585CrossRefGoogle Scholar
  23. 23.
    Okamoto I, Seio K, Sekine M (2008) Study of the base discrimination ability of DNA and 2′-O-methylated RNA oligomers containing 2-thiouracil bases towards complementary RNA or DNA strands and their application to single base mismatch detection. Bioorg Med Chem 16:6034–6041CrossRefGoogle Scholar
  24. 24.
    Østergaard ME, Kumar P, Nichols J, Watt A, Sharma PK, Nielsen P, Seth PP (2015) Allele-selective inhibition of mutant Huntingtin with 2-Thio- and C5- Triazolylphenyl-deoxythymidine-modified antisense oligonucleotides. Nucleic Acid Ther 25:266–274CrossRefGoogle Scholar
  25. 25.
    Saneyoshi H, Seio K, Sekine M (2005) A general method for the synthesis of 2‘-O-cyanoethylated oligoribonucleotides having promising hybridization affinity for DNA and RNA and enhanced nuclease resistance. J Org Chem 70:10453–10460CrossRefGoogle Scholar
  26. 26.
    Shigeta S, Mori S, Kira T, Takahashi K, Kodama E, Konno K, Nagata T, Kato H, Wakayama T, Koike N, Saneyoshi M (1999) Antiherpesvirus activities and cytotoxicities of 2-thiopyrimidine nucleoside analogues in vitro. Antivir Chem Chemother 10:195–209CrossRefGoogle Scholar
  27. 27.
    Shigeta S, Mori S, Watanabe F, Takahashi K, Nagata T, Wakayama T, Saneyoshi M (2002) Synthesis and antiherpesvirus activities of 5-alkyl-2-thiopyrimidine nucleoside analogues. Antivir Chem Chemother 13:67–82CrossRefGoogle Scholar
  28. 28.
    Shinha ND, Biernat J, Köster H (1983) β -Cyanoethyl N,N-dialkylamino/N-morpholinomonochloro phosphoamidites, new phosphitylating agents facilitating ease of deprotection and work-up of synthesized oligonucleotides. Tetrahedron Lett 24:5843–5846CrossRefGoogle Scholar
  29. 29.
    Shohda K, Okamoto I, Wada T, Seio K, Sekine M (2000) Synthesis and properties of 2′-O-methyl-2-thiouridine and oligoribonucleotides containing 2′-O-methyl-2-thiouridine. Bioorg Med Chem Lett 10:1795–1798CrossRefGoogle Scholar
  30. 30.
    Šponer J, Leszczynski J, Hobza P (1997) Thioguanine and thiouracil: hydrogen-bonding and stacking properties. J Phys Chem A 101:9489–9495CrossRefGoogle Scholar
  31. 31.
    Šponer J, Leszczynski J, Hobza P (2001) Electronic properties, hydrogen bonding, stacking, and cation binding of DNA and RNA bases. Biopolymers 61:3–31CrossRefGoogle Scholar
  32. 32.
    Šponer J, Jurečka P, Hobza P (2004) Accurate interaction energies of hydrogen-bonded nucleic acid base pairs. J Am Chem Soc 126:10142–10151CrossRefGoogle Scholar
  33. 33.
    Stone AJ (1996) The theory of intermolecular forces. Oxford University press, OxfordGoogle Scholar
  34. 34.
    Testa SM, Disney MD, Turner DH, Kierzek R (1999) Thermodynamics of RNA−RNA duplexes with 2- or 4-thiouridines: implications for antisense design and targeting a group I intron. Biochemistry 38:16655–16662CrossRefGoogle Scholar
  35. 35.
    Ueda T, Shibuya S (1970) Synthesis of sulfur-bridged uracil anhydronucleosides. Chem Pharm Bull 18:1076–1078CrossRefGoogle Scholar
  36. 36.
    Varani G, McClain W (2000) The G x U wobble base pair. A fundamental building block of RNA structure crucial to RNA function in diverse biological systems. EMBO Rep 1:18–23CrossRefGoogle Scholar
  37. 37.
    Vorbruggen H, Strehlke P (1973) Eine einfache synthese von 2-thiopyrimidin-nucleosiden. Chem Ber 106:3039–3061CrossRefGoogle Scholar
  38. 38.
    Yamamoto Y, Yokoyama S, Miyazawa T, Watanabe K, Higuchi S (1983) NMR analyses on the molecular mechanism of the conformational rigidity of 2-thioribothymidine, a modified nucleoside in extreme thermophile tRNAs. FEBS Lett 157:95–99CrossRefGoogle Scholar
  39. 39.
    Zhang R, Eriksson LA (2010) Theoretical study on conformational preferences of ribose in 2-thiouridine—the role of the 2′OH group. Phys Chem Chem Phys 12:3690–3697CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Life Science and TechnologyTokyo Institute of TechnologyTokyoJapan
  2. 2.Tokyo Institute of TechnologyYokohamaJapan

Personalised recommendations